
Six Software Engineering Principles for
Smarter Cyber-Physical Systems

Danny Weyns
KU Leuven, Linnaeus University

danny.weyns@kuleuven.be

Tomas Bures
Charles University

bures@d3s.mff.cuni.cz

Radu Calinescu
University of York, UK

radu.calinescu@york.ac.uk

Barnaby Craggs
University of Bristol

barney.craggs@bristol.ac.uk

John Fitzgerald
Newcastle University

john.fitzgerald@ncl.ac.uk

David Garlan
Carnegie Mellon University

garlan@cs.cmu.edu

Bashar Nuseibeh
Open University UK, Lero

bashar.nuseibeh@open.ac.uk

Liliana Pasquale
University College Dublin

liliana.pasquale@ucd.ie

Awais Rashid
University of Bristol

awais.rashid@bristol.ac.uk

Ivan Ruchkin
University of Pennsylvania

iruchkin@cis.upenn.edu

Bradley Schmerl
Carnegie Mellon University

schmerl@cs.cmu.edu

Abstract—Cyber-Physical Systems (CPS) integrate computa-
tional and physical components. With the digitisation of society
and industry and the progressing integration of systems, CPS
need to become “smarter” in the sense that they can adapt and
learn to handle new and unexpected conditions, and improve
over time. Smarter CPS present a combination of challenges that
existing engineering methods have difficulties addressing: inter-
twined digital, physical and social spaces, need for heterogeneous
modelling formalisms, demand for context-tied cooperation to
achieve system goals, widespread uncertainty and disruptions in
changing contexts, inherent human constituents, and continuous
encounter with new situations. While approaches have been put
forward to deal with some of these challenges, a coherent per-
spective on engineering smarter CPS is lacking. In this paper, we
present six engineering principles for addressing the challenges
of smarter CPS. As smarter CPS are software-intensive systems,
we approach them from a software engineering perspective with
the angle of self-adaptation that offers an effective approach to
deal with run-time change. The six principles create an integrated
landscape for the engineering and operation of smarter CPS.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems that integrate
computational and physical processes [1], [2]. The recent
progress in digitising the society and integrating computing
systems puts pressure on CPS to become “smarter” [2]–[4].
By “smarter” we mean: the systems that perpetually adapt and
evolve themselves by improving their existing capabilities and
learning new ones to deal with uncertainty, handle unexpected
conditions, and accommodate the change they face throughout
their lifetime [5]. The trend towards smarter CPS leads to a
significant increase in the complexity of these systems, to the
extent that software largely determines the design, deployment,
and evolution of the CPS. Software takes a central role in
realising (system-wide) supervisory control, managing safety
and security, and delivering resilience. Examples include smart
applications in areas such as mobility, manufacturing, power
distribution, water management, and safety in cities. Such
systems are complex socio-technical fabric where humans,
devices, and software interact in a myriad of ways [6]. In this
paper, we use the term “smarter CPS” to mark this qualitative

change step in complexity and smartness that emerging and
future CPS are exhibiting compared to traditional, more rigid
and more isolated CPS. We use the concept of “component”
to refer to the constituent parts of these systems, including
cyber, physical, and social (human) components, which may
themselves be independently owned and managed. Due to
their close connection to the physical and social operating
context, smarter CPS bring in the systems and systems-of-
systems engineering perspective into the software engineering
process. Whereas the focus of systems-of-systems is mostly on
integrating computing systems, smarter CPS put the emphasis
on integrating humans, software and physical components
that dynamically aggregate, adapt and evolve to realise and
improve their goals in the face of continuous change [7].

Recent discussions within the international research com-
munity (e.g., CPS Week, Dagstuhl and Shonan meetings on
CPS) have led to insights suggesting that the development of
future CPS requires a paradigm shift. This is also reflected
in several surveys, see e.g., [8]–[10], and recent funding
programs of EU and US NSF. The required shift relates to what
CPS engineering methods and techniques need to be brought
together in order to achieve the required smartness while deal-
ing with the complexity arising from the scale, connectivity,
and inherent uncertainty of these systems. The inherent blend
of cyber, physical and social components, demands a novel
truly multi-disciplinary engineering approach, as smarter CPS
present a combination of challenges that existing modelling
and development methods have difficulties addressing: (1)
intertwined digital, physical and social spaces, (2) use of het-
erogeneous models that vary in concepts, formalism, and level
of abstraction, (3) need for context-tied cooperation to achieve
system goals, (4) widespread uncertainty and disruptions in
a broad variety of changing contexts, (5) inherent human
constituents, and (6) continuous encounter with new situations.

A number of approaches have been put forward to deal
with some of these challenges. Lee [2] argues for model-based
design of systems comprising physical and cyber elements,
embracing temporal dynamics of CPS. Wang et al. [11] high-



light approaches that deal with uncertainties in manufacturing
systems, and Pierce et al. [12] present DESTECS that enables
system and software engineers to collaboratively produce
models that unite a system with controllers. Yet, there is a
need for a coherent perspective on engineering smarter CPS.

To that end, this paper contributes a set of six basic prin-
ciples to guide the engineering of smarter CPS: (1) crossing
boundaries, (2) leveraging the human, (3) fluid modelling, (4)
on the fly coalitions, (5) dynamically assured resilience, and
(6) learn novel tasks. By “principles” we mean ideas, concepts,
and mechanisms that offer a basis for solving an engineering
problem. Each of the principles takes a particular viewpoint
on the engineering of smarter systems, yet the principles are
connected. As smarter CPS are software-intensive systems,
we approach them mainly from a software engineering per-
spective, although the presented approaches align with the
physical and social aspects of smarter CPS. Our angle is self-
adaptation [13], [14] that offers an effective approach to deal
with run-time uncertainties that may occur within the system
itself, its environment or requirements [15].

We derived the six principles from discussions at the
SEsCPS workshops, e.g., [16], and our own experiences with
engineering CPS, e.g., [17]–[19]. The complementary set of
principles cover the main stages of engineering software-
intensive systems: domain engineering, design, operation, and
evolution. As such, the engineering principles create a new
landscape for the design and operation of smarter CPS.

II. RUNNING EXAMPLE

To clarify the challenges of smarter CPS and illustrate the
six engineering principles, we use a running example of a CPS
for rescue coordination after an earthquake. The overall goal
of the CPS is to rescue victims from an area with damaged
buildings and buildings on fire. The CPS comprises different
rescue teams that dynamically inter-operate to coordinate the
rescue operations. Rescue teams span multiple rescue agen-
cies, comprising a mix of firefighters and paramedics equipped
with sensors in their clothes and smart helmets (through
which they can communicate and also receive information
and instructions), as well as autonomous robots and unmanned
aerial vehicles (UAVs) that can scout areas outside and inside
buildings in the hazard area.

III. SOFTWARE ENGINEERING PRINCIPLES FOR SMARTER
CYBER-PHYSICAL SYSTEMS

A. Crossing Boundaries

Smarter CPS operate in complex environments that strad-
dle cyber, physical, and social spaces. Crossing boundaries
refers to tight interaction between these spaces. Cyber spaces
involve applications, networking configurations and infrastruc-
ture (e.g., the software components running on robots and
sensors that communicate via a network). Physical spaces refer
to the elements that are governed by the laws of physics
(e.g., buildings and the robots and people that can move
through them). Social spaces cover humans roles, knowledge
and organisational structure (e.g., the role of firefighters and
paramedics involved in the rescue operation, and the organ-
isation they belong to). Cyber, physical and social spaces

are highly intertwined, with eroding boundaries and systems
often operating across them. For example, robots and rescue
workers may only move to parts of the buildings that have not
been damaged. This allows forming transient communication
networks to exchange relevant information and to coordinate
the rescue operations. Figure 1 sketches the different spaces.
Components and their evolution are often modelled as graphs.
Properties can be modelled by annotating edges with weights,
for instance, to represent physical distance or degree of social
interaction. However, existing modelling formalisms and tools
only partially consider the heterogeneous nature and tight
interaction of cyber, physical, and social spaces, see e.g., [20].

Cyber Space

Asset

ZigBee

Physical Space

Building Affected 
Area

Floor1 FloorN
. . .

Corridor

Room1

Room2

Firefighter

Sensor1

Paramedics

Robot

Sensor2

Robot 
Software

Sensor1 
Software

Sensor2 
Software

Social Space

Firefighter 
Role

Paramedics 
Role

Organisation

Legend

ZigBee

Malicious 
Agent

Containment

Connectivity

Cross-space
relationship

Asset Asset

Threat

Security 
Control

Security 
Control

Fig. 1: Modelling example of crossing boundaries.

The principle “crossing boundaries” centres the engineer-
ing on the characteristics of the different spaces and their
integration. A key characteristic is the structure of spaces in
terms of components and their relationships [21]. In a physical
sense, a structure denotes the physical characteristics of a
space, such as containment (e.g., robots and people inside
a building), distance between objects, connectivity (e.g., two
areas connected through a corridor), and coverage (e.g., area
covered by the network). In a cyber sense, structure can
denote the topology and type of the network used by two or
more software components to communicate. In a social sense,
structure can represent ad-hoc formed organisations of rescue
workers that operate in the area affected by the earthquake.

One effect of the tight interaction between cyber, physical,
and social spaces is that smarter CPS are more vulnerable
to attacks than conventional software. We argue that the
structure of different spaces can provide awareness about
security concerns such as assets, threats, and the extended
attack surface brought by the interplay between cyber, physical
and social spaces. This can help identifying more effective
security adaptations that can be enacted in the three spaces.

Example. Robots and sensors worn by rescue teams exchange
valuable information about the areas of the building that need
to be explored during the rescue operation (asset). Since
robots and sensors communicate using a protocol (Zigbee
here) and may have limited battery, they cannot enable strong
security mechanisms to check the authenticity of the informa-



tion received. A malicious actor can exploit his/her physical
proximity to the robot (physical space) to send tampered
sensor data (cyber space), possibly slowing down the rescue
operation and harming the reputation (asset) of the rescue
organisation (social space). Although the assets to be protected
belong to the cyber and social space, a security adaptation can
be enacted in the physical space (e.g., a robot should identify
unauthorized individuals and force them to leave the building).
Alternatively, a malicious agent can take advantage of his/her
affiliation with the rescue organisation (social space) to access
and disclose sensitive information about the identity of the
people that have been rescued (asset), which is exchanged
between firefighters and paramedics. In this situation, stronger
authentication and encryption mechanisms can be enabled
when sensitive information is transmitted over the network
(cyber space). The rescue organisation can also restrict access
to sensitive information only to the firefighters and paramedics
directly involved in the rescue operations (social space).

B. Leveraging the Human

As we have argued above, smarter CPS are built and used
by humans whose behaviours intersect with the physical and
cyber components in a range of complex ways [22]. Humans
are not merely developers or users of CPS but an integral
functional part of the information flow [23] (e.g., firefighters
and paramedics equipped with wear-able technology operating
in a hazardous area form ad-hoc collaborations and informa-
tion flows to realise the rescue mission). Humans can play
an adversarial role too (as illustrated above). The inherent
uncertainty of humans in their interaction with technologies
may result in latent failures with profound impact (e.g., hu-
man decision-making in the rescue CPS made under extreme
conditions may jeopardise dynamic coalition formation of
rescue personnel, robots and UAVs). Research has shown that
leaving humans out of the loop can lead to failures that impact
key properties of a CPS such as safety and security, see
e.g., [19]. Hence, engineering smarter CPS must systematically
account for the integral role of humans throughout the CPS
life-cycle and not be left as a bolt-on or additional feature.
This underpins the need to reason about adaptation across the
boundaries of cyber, physical and social spaces.

The principle “leveraging the human” integrates humans in
the design and operation as first-class citizens, in particular
in runtime models of the system as “beyond-control” compo-
nents. Treating humans as inherent components in the overall
modelling of a CPS enables incorporating the behaviour of
people when reasoning about the CPS and its adaptations. The
“beyond-control” property expresses that these components
cannot be controlled directly (contrary to traditional system
components) and that the true state of these components is
unknown, but has to be inferred from observations and the
humans’ actions influenced and guided through information
delivered to them. Explicitly considering and modelling hu-
mans makes it possible to create interesting information flows
that become key links in the CPS (e.g., expertise of individuals
in crisis management captured in probabilistic models). On
the other hand, this makes it also possible to account for
potentially unexpected behaviour of humans and a potential

Component

MyCoalition

Component

UAV

ID: U125
State: Active
Sensor: S11
Loc: …

Component

Robot

ID: U15
State: Active
Sensor: S44
Loc: …

Component

Robot

ID: Self
State: Active
Loc: …

Beyond-Control
Component

Human

Type: Firefighter
ID: U15

Model: State

Beyond-Control
Component

Human

Type: Firefighter
ID: U15

Model: State

Fig. 2: Modelling example of leveraging the human.

gap in understanding between HW/SW components and hu-
mans, which relates to the question about how technologies
may impact human behaviours and where the intersections
may create latent failure. First-class integration of humans in
CPS can help ensuring that known human (active) errors do
not happen at the same time as system (latent) failures occur,
which, if not anticipated, may compromise the integrity of the
CPS and those of the (often critical) services they deliver.

Example. The component MyCoalition deployed on each
robot represents knowledge of a robot’s current coalition, see
Figure 2. The state of firefighters (that are modelled as beyond-
control components) is captured in probabilistic models that
are kept up to data using sensors (from other devices). Given
the probabilistic nature of the state of beyond-control compo-
nents and the state of the other components of the coalition, the
decisions of the robot can take into account modelled expertise
of human actors to make effective decisions, while ensuring
the integrity of the rescue team and its mission at all times.

C. Fluid Modelling

Complex CPS are typically built with multidisciplinary
teams that use heterogeneous models that vary in formalisms,
concepts, and levels of abstraction. The outputs and guaran-
tees of these models are combined in the deployed system.
Such fluid modelling is a natural outcome of the different
specification and verification approaches. Since the models
are designed separately, inter-dependencies naturally occur.
This often results in mismatches between models, introducing
errors [24] (e.g., the movements of UAVs may considered
successful in the planning model, yet, they may fail in the
real deployment due to differences in the assumed and actual
consumption of energy). To prevent such errors, inconsisten-
cies between models need to be detected by integrating the
heterogeneous models with proper semantics [25]. Adopting
a single, all-encompassing homogeneous modelling language
denies the fact that domain-specific formalisms are better
at verifying properties for their domain, and that there is
usually a well-established body of knowledge and expertise
built up around these formalisms. On the other hand, creating
simplified abstractions of each model and relating them of-
ten sacrifices more sophisticated interactions (e.g., related to
dynamic behaviour) that make such properties unverifiable.

The principle “fluid modelling” integrates heterogeneous
models by explicitly stating the relationships between them



as an integration property — a logical assertion over several
models [26]. Such an approach prescribes three steps:

1) Create integration abstractions by abstracting structural
and behavioural elements of models that are important
for stating desired integration properties.

2) Specify multi-model integration properties to express
relationships between the abstractions of models; the
verify the properties by combining constraint satisfaction
problem solvers and verifiers for individual models.

3) Execute domain-specific analyses on consistent models
(facilitated e.g. by analysis contracts [18]). This ensures
that effects of analyses update models without introducing
errors or violating model consistency.

This approach can be used across physical, software, and
human models required for specifying and verifying CPS.

Example. As explained above, one integration property that
needs to be checked for the earthquake rescue system is
that the energy estimates used in path planning agree with
those used in a power model, within a given error threshold.
Suppose that path planning uses an environment model of
UAV movements, with their timings and energy estimates. The
behaviours in this model can be checked with properties in,
say, Probabilistic Computation Tree Logic (PCTL) [27]. The
power model has detailed descriptions of battery dynamics and
hardware-specific movement operations (e.g., finer-grained
motor actuation). Applying the approach outlined above gives:

1) Abstract the power-related plans using PCTL, and move-
ment operations — as a collection of annotated objects,
also known as a view (rectangles in Figure 3).

2) Specify the integration property that the energy estimates
agree between the models for the abstractions defined in
Step 1, and verifies it with the help of an SMT solver
and a probabilistic model checker (star in Figure 3).

3) Execute analyses and re-verification according to their
dependencies. E.g., if some analysis changes control
gains for motors, engineers need to update both models
and re-verify the integration property (parallelograms).

This approach is fluid in three ways: it can handle changes
of models throughout their lifetime, incorporate new models
by developing abstractions for them, and adjust to uncertainty
in models by relaxing the bounds in integration properties.

Fig. 3: Fluid approach for dynamic adaptation and integration
of models and analysis. Green (dark) elements represent exist-
ing artefacts. Yellow (bright) elements are dynamically added.

D. On the Fly Coalitions

A cornerstone of smarter CPS to address complex problems
is cooperation across entities within the CPS and with external
systems. This cooperation, in the form of data exchange and
coordinated activities, enables the constituting components of
smarter CPS to work together as a multi-agent system [28],
[29] (e.g., coordinated flight patterns of UAVs to coordinate
scouting, and coordination of firefighters and paramedics in
rescue operations). The common denominator of such cooper-
ation is that it is tied to the operating context (e.g., a coalition
of firefighters and paramedics from different rescue agencies
would be dynamically formed if injured victims are discovered
in a collapsed building; yet, once the victims are saved or if an
exceptional event happens, such as a gas leak is detected close-
by, the coalition is dynamically dissolved or rearranged with
another objective or strategy to achieve its current objective).
This leads to a highly adaptive system architecture, which
opportunistically reshapes at runtime to address potentially
new situations at hand. This level of adaptability is difficult to
tackle with traditional engineering approaches that either put
the focus on individual entities in the system or lack first-class
support for truly open collaborations between entities [29].

The principle “on-the-fly coalitions” makes such dynamic
collaborations first-class concepts. The DEECo component
model [30] is one such realisation. Here a specification of
a coalition is captured by the concept of an ensemble, which
is a first-class modelling and runtime concept, along with so
called autonomic components that represent individual entities
(e.g. a firefighter or paramedic). The ensemble embodies the
coordination needed among multiple entities for the comple-
tion of a specific goal (e.g. to rescue a victim). The ensemble
acts as a type, which is instantiated for a particular matching
situation (e.g. to form a team when a victim is identified).

Example. Figure 4 show an ensemble type that declaratively
prescribes what types of entities it needs and what properties
should hold about the actual state of the entities – e.g. that one
firefighter needs to act as a leader (line 6) with a minimum rank
of lieutenant (line 11), and two or three additional firefighters
and one paramedic are needed (lines 7, 8). These workers
should be idle or be at the victim location (lines 12 to
16). Should there be more options for choosing the available
firefighters and paramedic, they should be chosen based on
their state and proximity to the victim location (lines 18 to
21). Once an ensemble is established, it assigns tasks to the
autonomic components in the ensemble (from line 23).

The selection of autonomic components to form an ensem-
ble happens dynamically at runtime and reflects the current
state and availability of the firefighters and paramedics. Thanks
to the declarative specification of the ensemble type, the en-
semble instance can also seamlessly and automatically reshape
at runtime in case of exceptional situations (e.g. in case a
firefighter is injured, she is automatically removed from the
ensemble and another available firefighter joins the ensemble).

E. Dynamically Assured Resilience

Smarter CPS will play key roles in domains of significant
economic and societal importance. These CPS must withstand
uncertainties and disruptions with acceptable impact on their



Fig. 4: Excerpt of an ensemble specification.

provided service, i.e., they must be resilient. In critical applica-
tions, this resilience must be guaranteed by assurance evidence
enabling stakeholders to trust the CPS [31]. Since the wide va-
riety of changing contexts that smarter CPS operate in cannot
be fully anticipated before operation, assuring their resilience
must include activities performed throughout the CPS life-
time. First, requirements analysis, design and implementation
must devise the functionalities for the CPS components, the
architecture with variability points, and the actual code (e.g.,
functionality for navigation, victim detection, and communi-
cation capabilities of robots and UAVs, and the ways in which
components of different rescue agencies could be integrated).
Next, verification and validation must generate preliminary
assurance evidence, and a partial assurance argument with
placeholders for the evidence unavailable until runtime (e.g., a
combination of formal verification, simulation, and testing can
be used to gather preliminary assurance evidence for the rescue
case). Finally, fully-fledged CPS configurations and plans, with
dynamic adaptations of configurations and online re-planning,
and the additional assurance evidence required to complete
the assurance argument, must be synthesised at runtime, when
the operation context is known and its uncertainty can be
quantified and resolved through adaptation (e.g., this may
involve allocating rescue tasks to CPS components based on
their capabilities and the characteristics and actual conditions
of the buildings and the terrain affected by the earthquake).

The principle of “dynamically assured resilience” achieves
this dynamically assured resilience through the use of runtime
mathematically based modelling, analysis and synthesis tech-
niques such as stochastic and statistical model checking [32]
and runtime verification [33]. As these techniques are com-
putationally intensive and adopting new CPS configurations
and plans can consume considerable time and resources,
system-level runtime reconfiguration should only be required
infrequently, after major disruptions. Accordingly, each new
CPS configuration or plan synthesised at runtime must be

robust, i.e., capable of handling a range of context changes.

Example. Figure 5 illustrates how the rescue CPS synthesises
resilient configurations and plans when a disruptive change oc-
curs, i.e., a collapsed building catches fire during the mission.

CPS context

CPS behaviour

collapsed building

catches fire

robust
plan 1 robust

plan 2

area of safe
behaviours

that achieve
CPS goals

context variation
accommodated

by plan 1

runtime
assurance
evidence 2

runtime
assurance
evidence 1

context variation
accommodated

by plan 2

disruptive change

estimated context

context uncertainty

regular change

Fig. 5: Robust plan synthesised after a major disruption, with
assurance evidence for the intended application and context.

F. Learn Novel Tasks

Smarter CPS inevitably will encounter novel scenarios
during their lifetime (e.g., robots may need to find paths in
environments that they have not encountered before). Reacting
to novel situations via manual interventions would require
tremendous efforts and may be too slow in critical situations.
Dealing with these intrinsic challenges requires smarter CPS
to preserve knowledge from the past and utilise this knowledge
efficiently when performing novel tasks in the future.

The principle of “learn novel tasks” leverages on recent
progress in the field of machine learning and lifelong learn-
ing [34] that enables a learner to deal with new learning tasks
from many related tasks. To that end, a CPS needs to be
enhanced with a meta-learning system with facilities to store
knowledge and exploit this knowledge to evolve a learner from
experiences of executed tasks. The basic modules are:

• A concept generator extracts high-level concepts from
executing many concrete tasks or historical data of ex-
ecuting tasks. This generator can for instance be realised
using a deep neural network [35].

• The concept discriminator predicts labels for the con-
cepts. The concept generator can be realised using a
learning method such as a classifier [36].

• A meta-learner exploits the extracted knowledge to teach
a learner how to deal with new situations by gradually
updating the learner while tasks are performed. Meta-
learners exist for different types of learning tasks [37].

Example. Figure 6 illustrates how the “learn novel tasks” can
teach a path finder of a robot to find paths in buildings when
the robot encounters new conditions. The concept generator
extracts high-level concepts from executing concrete rescue
tasks such as “pattern for team composition” and “delegation
of function.” From these concepts, the concept discriminator
predicts labels such as “master-slave” and “on the fly planning
by team member” that can, for instance, be applied to compose
or dynamically adapt a team of robots to rescue victims and
find paths in buildings that were not encountered before.



Component

Concept 
Generator

Component

Concept 
Discriminator

Component

Meta-LearnerLabeled 
Concepts

Component

Task Manager

Component

Navigator

Component

Path-Finder 
(Learner)

rescue tasks

concepts

updates

requests requests
Historical

Data

Fig. 6: Learning a path finder learner to deal with novel tasks.

Robots and UAVs equipped with such a lifelong learning
system will be able to quickly learn to behave efficiently in
new situations based on knowledge learned over time.

IV. NEW LANDSCAPE FOR ENGINEERING SMARTER CPS
The six principles for engineering smarter CPS cover the

main stages of the lifetime of CPS:
Domain engineering: “crossing boundaries” and “leveraging

the human” tackle the eroding and dynamic boundaries of
digital, physical, and social spaces, and the impact of humans
as inherent constituents of next-generation CPS.

Design: “fluid modelling” and “on the fly coalitions” tackle
the need for aligning abstractions and the demand for context-
tied adaptation between cooperating CPS components.

Operation: “dynamic assured resilience” tackles the need
for continuous adaptations and guaranteed resilience under
widespread uncertainty and disruptions of CPS at runtime.

Evolution: “learn novel tasks” tackles the need for auto-
mated evolution of CPS when facing new situations.

The six principles suggest that much is expected of future
CPSs and their engineering. We need new tool chains but
also engineers with a deep rooted understanding of how
to develop software that is able to adapt and evolve under
continuous change. As our rescue example shows, future CPSs
are composed through interleaving computational, physical
and social components and their spaces, linking independent
constituent systems, many of them with sources of uncertainty
that require on-the-fly adaptation and learning to evolve.

The emerging message is that CPS engineering challenges
established boundaries in two main dimensions: boundaries
between engineering disciplines on the one hand — and
boundaries between development and operation on the other
hand. We offer the six principles presented in this paper as a
basis for engineers to address the challenges that come with
those fading boundaries when building smarter CPS.

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” in 2019 IEEE Interna-
tional Conference on Mechatronics (ICM), vol. 1, pp. 430–432, 2019.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in Object and
Component-Oriented Real-Time Distributed Computing, 2008.

[3] M. Bujorianu and H. Barringer, “Cyber-physical systems,” The Impact
of Control Technology, vol. 12, no. 1, pp. 161–166, 2011.

[4] J. Tavčar and I. Horváth, “A review of the principles of designing smart
cyber-physical systems for run-time adaptation: Learned lessons and
open issues,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 1, pp. 145–158, 2019.

[5] D. Weyns et al., “A research agenda for smarter cyber-physical systems,”
Journal of Integrated Design and Process Science, 2021 (in print).

[6] R. Calinescu, J. Cámara, and C. Paterson, “Socio-cyber-physical sys-
tems: Models, opportunities, open challenges,” in Software Engineering
for Smart Cyber-Physical Systems, 2019.

[7] K. L. Bellman et al., “Special issue on “self-improving self integration”,”
Future Generation Computer Systems, vol. 119, 2021.

[8] J. A. Stankovic, “Research directions for cps in wireless and mobile
healthcare,” ACM Trans. Cyber-Phys. Syst., vol. 1, no. 1, 2016.

[9] V. Gunes et al., “A survey on concepts, applications, and challenges in
cyber-physical systems,” KSII Transactions on Internet and Information
Systems, vol. 8, no. 12, pp. 4242–4268, 2014.

[10] K. Zhou, T. Liu, and L. Zhou, “Industry 4.0: Towards future industrial
opportunities and challenges,” in International Conference on Fuzzy
Systems and Knowledge Discovery, 2015.

[11] L. Wang, M. Törngren, and M. Onori, “Current status and advancement
of cyber-physical systems in manufacturing,” Journal of Manufacturing
Systems, vol. 37, pp. 517 – 527, 2015.

[12] K. Pierce et al., “Collaborative modelling and co-simulation with
DESTECS: A pilot study,” in 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2012.

[13] D. Garlan et al., “Rainbow: Architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[14] D. Weyns, Introduction to Self-Adaptive Systems, A Contemporary
Software Engineering Perspective. Wiley - IEEE, 2020.

[15] R. Calinescu et al., “Understanding uncertainty in self-adaptive sys-
tems,” in International Conference on Autonomic Computing and Self-
Organizing Systems, 2020.

[16] T. Bures et al., “Software Engineering for Smart Cyber-Physical Systems
(SEsCPS 2018),” ACM SIGSOFT Softw. Eng. Notes, vol. 44, no. 4, 2019.

[17] C. Tsigkanos et al., “Ariadne: Topology aware adaptive security for cps,”
in International Conference on Software Engineering, 2015.

[18] I. Ruchkin et al., “Contract-based integration of cyber-physical analy-
ses,” in International Conference on Embedded Software, 2014.

[19] B. Craggs and A. Rashid, “Smart cyber-physical systems: Beyond usable
security to security ergonomics by design,” in International Workshop
on Software Engineering for Smart Cyber-Physical Systems, 2017.

[20] P. G. Larsen et al., “Integrated tool chain for model-based design of
cyber-physical systems: The into-cps project,” in CPS Data, 2016.

[21] B. A. Yilma, H. Panetto, and Y. Naudet, “Systemic formalisation of
Cyber-Physical-Social System (CPSS): A systematic literature review,”
Computers in Industry, vol. 129, p. 103458, 2021.

[22] D. S. Nunes, P. Zhang, and J. Sá Silva, “A survey on human-in-the-loop
applications towards an internet of all,” IEEE Communications Surveys
Tutorials, vol. 17, no. 2, pp. 944–965, 2015.

[23] B. A. Yilma, H. Panetto, and Y. Naudet, “A Meta-Model of Cyber-
Physical-Social System: The CPSS Paradigm to Support Human-
Machine Collaboration in Industry 4.0,” in Collaborative Networks and
Digital Transformation, Springer, 2019.

[24] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber–physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[25] Y. Liu et al., “Review on cyber-physical systems,” Journal of Automatica
Sinica, vol. 4, no. 1, pp. 27–40, 2017.

[26] I. Ruchkin, Integration of Modeling Methods for Cyber-Physical Sys-
tems. PhD Thesis, Carnegie Mellon University, Mar. 2019.

[27] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, pp. 512–535, 1994.

[28] M. Z. Candra and H.-L. Truong, “Reliable coordination patterns in
cyber-physical-social systems,” in 2016 International Conference on
Data and Software Engineering, pp. 1–6, 2016.

[29] Y. Rizk, M. Awad, and E. W. Tunstel, “Decision making in multiagent
systems: A survey,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 10, no. 3, pp. 514–529, 2018.

[30] T. Bures et al., “Deeco: An ensemble-based component system,” in ACM
Sigsoft Symposium on Component-Based Software Engineering, 2013.

[31] de la Vara et al., “Amass: A large-scale european project to improve
the assurance and certification of cyber-physical systems,” in Product-
Focused Software Process Improvement, Springer, 2019.

[32] D. Weyns and M. U. Iftikhar, “Activforms: A model-based approach to
engineer self-adaptive systems,” CoRR, vol. abs/1908.11179, 2019.

[33] R. Calinescu et al., “Engineering trustworthy self-adaptive software with
dynamic assurance cases,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1039–1069, 2018.

[34] Z. Chen and B. Liu, Lifelong Machine Learning, Second Edition.
Morgan and Claypool, 2018.

[35] W. Liu et al., “A survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, pp. 11 – 26, 2017.

[36] S. B. Kotsiantis, “Supervised machine learning: A review of classifi-
cation techniques,” in Emerging Artificial Intelligence Applications in
Computer Engineering, IOS, 2007.

[37] J. Vanschoren, “Meta-learning: A survey,” in arXiv, 1810.03548, cs.LG,
https://arxiv.org/abs/1810.03548, 2018.


	Introduction
	Running Example
	Software Engineering Principles for Smarter Cyber-Physical Systems
	Crossing Boundaries
	Leveraging the Human
	Fluid Modelling
	On the Fly Coalitions
	Dynamically Assured Resilience
	Learn Novel Tasks

	New Landscape for Engineering Smarter CPS
	References

