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ABSTRACT
Closed-loop verification of cyber-physical systems with neural net-
work controllers offers strong safety guarantees under certain as-
sumptions. It is, however, difficult to determine whether these guar-
antees apply at run time because verification assumptionsmay be vi-
olated. To predict safety violations in a verified system, we propose a
three-step confidence composition (CoCo) framework for monitor-
ing verification assumptions. First, we represent the sufficient con-
dition for verified safety with a propositional logical formula over
assumptions. Second, we build calibrated confidence monitors that
evaluate the probability that each assumption holds. Third, we ob-
tain the confidence in the verification guarantees by composing the
assumption monitors using a composition function suitable for the
logical formula. Our CoCo framework provides theoretical bounds
on the calibration and conservatism of compositional monitors. Two
case studies show that compositional monitors are calibrated better
than their constituents and successfully predict safety violations.

KEYWORDS
confidence composition, run-time monitoring, calibration error,
closed-loop verification of neural networks, cyber-physical systems

1 INTRODUCTION
Autonomous cyber-physical systems, such as self-driving cars and
service robots, are increasingly deployed in complex and safety-
critical environments in our society [10, 40, 48]. Recently, the break-
through capabilities in handling such environments came from the
use of learning components, which may behave unpredictably. To
consistently rely on such capabilities, one needs to ensure that the
system would not to endanger the lives and property around it, or
at least that an early enough warning is given to avert the disaster.

When assuring a complex cyber-physical system, one can obtain
strong safety guarantees from closed-loop reachability verification,
recently extended to explicitly check neural network (NN) con-
trollers [18, 45]. To provide its guarantees, the verification relies
on assumptions about system’s dynamics, perception, and environ-
ment. Should the system find itself in circumstances not matching
these assumptions, the verification guarantees are void — and re-
markably difficult to re-obtain at run time due to limited scalability.

On another front, many run-timemonitoring techniques were de-
veloped to detect anomalies, such as model inconsistencies and out-
of-distribution samples [3, 5, 28]. These tools can provide valuable
situational insights, but their outputs often lack a direct connection
to the verification guarantees or system-level safety. For example,

it is not clear to which extent an out-of-distribution image of a stop
sign invalidates a collision-safety guarantee for an autonomous car.

Thus, it is both challenging and important to quantify and moni-
tor the trust in design-time verification guarantees at run time. In
particular, it is vital to know when the guarantees no longer apply,
so as to switch to a backup controller, execute a recovery maneuver,
or ask for human assistance. The monitoring of verification guar-
antees has the potential to predict otherwise unforeseen failures in
situations for which the system was not trained or designed.

To monitor verification guarantees, we propose quantifying the
confidence in the assumptions of verification. By confidencewemean
an estimate of the probability that the assumption holds. Although
an assumption may not be directly observable, its monitor would
over time accumulate confidence, which, if properly calibrated,
would be close to the true chance of satisfying the assumption given
the observations. If all the assumptions are satisfied, our verification
retroactively guarantees safety. Such assumptions can be monitored
with off-the-shelf techniques [5, 7, 32, 39, 47], and their confidences
would be combined into a single confidence in the guarantees. In a
safety-critical system, this confidence should not be over-estimated.

This paper introduces the CoCo framework for composing confi-
dences from monitors of verification assumptions, consisting of
three steps: (i) verify the system under explicit assumptions, such
that a propositional formula over these assumptions entails the
system’s safety, (ii) build a well-calibrated confidence monitor for
each assumption, (iii) use a composition function informed by the
formula from the first step to combine the monitor outputs into a
composed confidence. This confidence quantifies the chance that
the verification guarantees apply at that moment.

We develop the theoretical conditions under which the composed
confidence is calibrated and conservative, up to a bounded error,
with respect to the true probability of safety. These conditions are
that (a) the system model under verification can explain most safe
behaviors, (b) a violation of assumptions would likely lead to a
failure, and (c) the composition function is calibrated/conservative
with respect to the assumptions. We also prove calibration error
bounds for two composition functions — product and weighted
average — and a conservatism bound for the product.

We evaluate CoCo on two systems with NN controllers: a moun-
tain car and an underwater vehicle. Experiments show that our
compositional monitors are useful for safety prediction, outperform
the individual monitors, and can be tuned for conservatism. Our
data-driven composition functions improve the performance fur-
ther if provided the data relating the monitors and the assumptions.
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To summarize, this paper makes four contributions:

• The CoCo framework for composing confidence monitors
of verification assumptions with five composition functions.

• Sufficient conditions for bounded calibration of composite
confidence to the safety chance, with the expectations from
models, assumptions, monitors, and composition functions.

• Upper bounds on the expected calibration error of two com-
position functions, and the conservatism error of one.

• Two case studies that demonstrate the utility of the frame-
work and the trade-offs between composition functions.

The rest of the paper proceeds as follows. The necessary back-
ground on verification and monitoring is given in the next section.
Section 3 surveys the existing research. Section 4 presents the key
contributions: the framework, the end-to-end calibration condi-
tions, and bounds on the errors of composition functions. Section 5
describes two case studies and the experimental results. The paper
wraps up with a brief discussion in Section 6.

2 BACKGROUND
Here we describe the preliminaries of verification and monitoring.

2.1 Verification
Definition 1 (System). A system 𝑠 = (𝑋,𝑋0, 𝑌 ,𝑈 , ℎ, 𝐹𝑑 , 𝐹𝑚)

consists of the following elements:

• State space 𝑋 : continuous, unbounded, finite-dimensional,
containing states 𝑥 (which include the discrete time)

• Initial states 𝑋0 ⊂ 𝑋
• Observation space 𝑌 , containing observations 𝑦
• Action space𝑈
• Controller ℎ : 𝑌 → 𝑈 , implemented with a neural network
• Dynamics models 𝐹𝑑 : a set of functions 𝑓𝑑 : 𝑋,𝑈 → 𝑋

• Measurement models 𝐹𝑚 : a set of functions 𝑓𝑚 : 𝑋 → 𝑌

A system determines a set of state traces 𝑿 (𝑠) and a set of obser-
vation traces 𝒀 (𝑠) resulting from executing every combination of
functions from 𝐹𝑑 × 𝐹𝑚 on every initial state in 𝑋0 indefinitely. A
particular realization of a system is a pair of state and observation
vectors 𝒙 , 𝒚 that occur for specific 𝑥0 ∈ 𝑋0, 𝑓𝑑 ∈ 𝐹𝑑 , and 𝑓𝑚 ∈ 𝐹𝑚 .

A safety property 𝜑 is a Boolean predicate over traces: 𝜑 (𝒙) ∈
{T, F}. A property 𝜑 is satisfied on system 𝑠 , denoted 𝑠 |= 𝜑 , iff every
trace from that system satisfies 𝜑 : ∀𝒙 ∈ 𝑿 (𝑠), 𝜑 (𝒙) = T. Thus, this
paper considers arbitrary deterministic temporal safety properties.

A verification assumption 𝐴 is a restriction on the system’s “un-
knowns” — the states and models of the system — so, 𝐴 ⊆ 𝑋 × 𝐹𝑑 ×
𝐹𝑚 . The assumption holds on a trace (𝒙,𝒚) if for any combination
of 𝑥0, 𝑓𝑑 , and 𝑓𝑚 that realizes this trace it is true that (𝑥0, 𝑓𝑑 , 𝑓𝑚) ∈ 𝐴.
When assumptions 𝐴1 . . . 𝐴𝑛 are combined with a propositional
logical formula 𝜓 , 𝐴𝜓 = 𝜓 (𝐴1 . . . 𝐴𝑛) is also an assumption. The
meaning of propositional operators (∧,∨,¬, =⇒ ) is defined by the
corresponding set operations (intersection for ∧, union for ∨, etc).
A system 𝑠 = (𝑋,𝑋0, 𝑌 ,𝑈 , ℎ, 𝐹𝑑 , 𝐹𝑚) under assumption 𝐴 = (𝑋 ′

0, 𝐹
′
𝑑
,

𝐹 ′𝑚), denoted as 𝑠𝐴 , is an intersection of the initial states and re-
spective models: 𝑠𝐴 = (𝑋,𝑋0 ∩ 𝑋 ′

0, 𝑌 ,𝑈 , ℎ, 𝐹𝑑 ∩ 𝐹 ′
𝑑
, 𝐹𝑚 ∩ 𝐹 ′𝑚).

For a given system 𝑠 , a verification result of property 𝜑 , denoted
as𝑉𝑠,𝜑 , is a function that maps any assumption𝐴 to { T, F }. It repre-
sents the outcome of a verification effort under that assumption, re-
gardless of the exact method. Value T is assigned only if 𝜑 was guar-
anteed by the verification algorithm, whereas F is assigned in all the
other cases (counterexample exists, uncertainty too high, time limit
reached, etc). Since verification is over-approximate and exhaustive,
it never produces a false safety outcome: 𝑉𝑠,𝜑 (𝐴) = T =⇒ 𝑠𝐴 |= 𝜑 .
Such an assumption 𝐴 is called sufficient for 𝜑 .

2.2 Confidence Monitoring
Intuitively, we want to compute the confidence in (i.e., an estimate of
the probability of) the system satisfying a safety property 𝜑 in the
future given a prefix of observations 𝒚. Confidences are computed
by CPS monitors in uncertain conditions, when the exact state,
dynamics, and measurement model are not known. Therefore, we
represent the selection of the actual system as a random sampling
of the system’s unknowns — the initial state 𝑥0, dynamics 𝑓𝑑 , and
measurement function 𝑓𝑚 — from some unknown distribution D
over 𝑋 , 𝐹𝑑 , and 𝐹𝑚 .

Once we fix the distribution D, it induces the distribution D𝒙,𝒚

on the system’s realization (𝒙,𝒚). Therefore, our monitoring goal
is to estimate the probability of safety given observations up to
the current moment, namely Pr(𝒙,𝒚)∼D(𝒙,𝒚)

(
𝜑 (𝒙) = T | 𝒚1..𝑛

)
,

where 𝒚1..𝑛 means the first 𝑛 elements of 𝒚. We pursue this goal by
monitoring confidence in assumptions. Since an assumption 𝐴 can
be seen as a predicate over random (𝑥0, 𝑓𝑑 , 𝑓𝑚) ∼ D, its satisfaction
is also random: 𝐴 ∼ D𝐴 , where D𝐴 is induced by D.

A confidence monitor 𝑀 : 𝒀 → [0, 1] for assumption 𝐴 takes
𝒚1..𝑛 and outputs its estimate of Pr𝒚∼D𝒚 (𝒚1..𝑛 ∈ 𝒀 (𝑠𝐴)), that is, its
degree of belief that the observations came from a system where 𝐴
holds. The monitor’s output,𝑀 (𝒚), is stochastic because it depends
on 𝒚. Since monitors estimate probabilities, we measure the quality
of monitors using three types of calibration error with respect to 𝐴:

• Expected calibration error (𝐸𝐶𝐸):

𝐸𝐶𝐸 (𝑀,𝐴) := E
𝒚∼D𝒚

[|Pr𝐴∼D𝐴

(
𝐴 | 𝑀 (𝒚)

)
−𝑀 (𝒚) |]

• Maximum calibration error (𝑀𝐶𝐸):

𝑀𝐶𝐸 (𝑀,𝐴) := max
𝑝∈[0,1]

[|Pr𝐴∼D𝐴,𝒚∼D𝒚

(
𝐴 | 𝑀 (𝒚) = 𝑝

)
− 𝑝 |]

• Conservative calibration error (𝐶𝐶𝐸):

𝐶𝐶𝐸 (𝑀,𝐴) := max
𝑝∈[0,1]

[𝑝 − Pr𝐴∼D𝐴,𝒚∼D𝒚

(
𝐴 | 𝑀 (𝒚) = 𝑝

)
]

𝐸𝐶𝐸 and𝑀𝐶𝐸 are widely used measures of calibration [13, 25].
The concept of 𝐶𝐶𝐸 is novel — we introduce it to asymmetrically
quantify safety in critical systems: false alarms are safe, but missed
alarms are not. 𝑀𝐶𝐸 is the strictest measure of monitor quality
because𝑀𝐶𝐸 ≥ 𝐸𝐶𝐸 and𝑀𝐶𝐸 ≥ 𝐶𝐶𝐸. When 𝐸𝐶𝐸 = 0, themonitor
is calibrated in expectation. When𝑀𝐶𝐸 = 0, the monitor is perfectly
calibrated. When 𝐶𝐶𝐸 ≤ 0, the monitor is conservative.

For brevity, we will omit the distributions when they are clear
from the context and refer to monitor output𝑀 (𝒚) as just𝑀 . We
assume that this output is characterized by a continuous probability
density Pr(𝑀) with finite expectation E[𝑀] and variance Var[𝑀].
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3 RELATEDWORK
The research related to this paper spans several areas: detection
and estimation, aggregation of probabilities, run-time monitoring
and assurance, and assumption monitoring.

Anomaly detection is a well-studied problem in control theory
and signal processing. In particular, there are multiple well-written
books on sequential detection and estimation [32, 39, 47]. We rely
on two groups of such methods. First, filtering and parameter esti-
mation can be used to implement the monitors that estimate states
and noise parameters. Specifically, we implemented monitors using
standard Monte Carlo and particle filtering [7]. Second, monitoring
model validity is related to classical change detection [49] as well
as more recent computational model validation methods [5, 27, 33],
one of which we use to monitor assumptions on our model. Unlike
classical detection methods, our work focuses on calibration [13],
i.e., the faithfulness of the detector to the true frequency of the
underlying event. While classical model-based detectors [49] can
be considered “calibrated” by design under distributional assump-
tions (since probabilities can be explicitly computed), recent com-
putational approaches [5] and classical detectors under unknown
distributions are in essence “black-box” and need to be calibrated
post-hoc in order to provide performance guarantees.

Combining probability estimates is well-studied in statistics and
artificial intelligence [34, 37, 50]. In a typical setting, such as forecast
aggregation or ensemble learning, the combined methods estimate
the probability of the same underlying phenomenon. In contrast, our
monitors predict fundamentally different assumptions combined
with logical operators. This setting can be interpreted as proba-
bilistic graphical models with calibration constraints (as opposed
to factor weights or conditional probabilities) [19], and our prod-
uct composition corresponds to the noisy-OR graphical model [29].
Copulas [26] encode low-dimensional joint distributions with given
marginals and can be used to model dependencies between verifi-
cation assumptions, which we have so far assumed conditionally
independent. Broadly, the literature on combining probabilities
inspires the functions we use for confidence composition.

Confidence is emerging as a key concept for expressing uncer-
tainty in learning-enabled systems in such scenarios as detecting
objects [2] and anticipating human motion [10]. Confidences can
be endowed with distributions to enable effective and general in-
ference [41]. However, the poor calibration of confidences remains
a major issue, especially for neural networks [13, 46]. We study the
calibration of black-box monitors in a safety-critical compositional
setting without detailed assumptions on confidence distributions.

Run-time monitoring is increasingly important in assurance of
cyber-physical systems, with multiple run-time assurance frame-
works proposed recently [1, 3, 8, 22, 40, 44]. Some of them fo-
cus on safety-preserving decision-making rather than accurate
monitoring [4, 8, 40]. Others focus on specifying and monitoring
safety properties in Linear/Metric/Signal Temporal logic with uncer-
tainty [6, 43, 48], whereas we indirectly predict the satisfaction of
safety properties. Yet others provide well-calibrated confidencewith
non-compositional techniques such as conformal prediction [3] and
dynamic Bayesian networks [1] — and thus can be incorporated
into our framework as individual monitors. A closely related re-
cent framework is ReSonAte [14], based on representing risks with

bowtie diagrams (a counterpart of our propositional formulas) and
estimating risk by using conditional distributions between sys-
tem states and failures. ReSonAte’s approach is analogous to our
Bayesian composition, which learns a joint distribution of monitors
conditioned on assumptions — and naturally requires joint monitor
samples or additional, strong independence assumptions.

Assumptions have long been considered a potential cause of
failures in safety-critical systems [11, 30, 38]. The probabilistic and
compositional formalization of assumptions is most common in
frameworks for assume-guarantee reasoning and compositional
verification [9, 20, 36]. Our paper investigates a complementary di-
rection of connecting the guarantees of closed-loop neural network
verification [17] with uncertain and imprecisely modeled run-time
environments by using assumptions as an “interface” between the
two. Prior works have pioneered assumption monitoring in model-
based, non-deterministic settings: explicitly specified monitors [42]
and monitors of proof obligations with partially observable vari-
ables [6, 23]. These model-based approaches have the advantage
of verifying monitors within the semantics of their respective mod-
els. Pursuing our vision of compositional confidence-based assur-
ance [35], this paper extends confidence monitoring of assumptions
to a setting where monitors do not conform to any given semantics
and can exhibit unknown stochastic behavior.

4 CONFIDENCE COMPOSITION FRAMEWORK
Our CoCo framework uses the following intuition. Suppose that
we have monitors𝑀1 . . . 𝑀𝑛 for assumptions 𝐴1 . . . 𝐴𝑛 , some com-
bination of which,𝐴𝜓 , is sufficient for, and thus predictive of, safety.
From𝑀1 . . . 𝑀𝑛 , we can build a compositional monitor𝑀𝐶 of 𝐴𝜓
that will estimate Pr(𝐴𝜓 ), which is used as an indirect estimate of
the chance of safety. Our composite monitor𝑀𝐶 : [0, 1]𝑛 → [0, 1]
has form 𝐶 (𝑀1 . . . 𝑀𝑛), where 𝐶 is a composition function selected
depending on 𝜓 . Our framework formalizes the argument that
if safety depends on the assumptions that have monitors with
bounded 𝐸𝐶𝐸 (or𝐶𝐶𝐸), then an appropriate compositional monitor
will have bounded 𝐸𝐶𝐸 (𝐶𝐶𝐸 resp.) error with respect to the safety
chance. This argument needs to account for model inaccuracies,
overly conservative assumptions, and imperfect monitors.

Our framework imposes certain requirements on the models,
explained in the next subsection, and proceeds in three steps:

(1) Perform verification and elicit the assumptions sufficient for
safety (Section 4.2)

(2) Build and calibrate a confidencemonitor for each assumption
(Section 4.3)

(3) Compose monitors using a composition function with desir-
able bounds on the calibration error (Section 4.4)

In each step, we identify the framework’s requirements and
briefly outline how they can be achieved. Section 4.5 capitalizes on
these requirements by providing end-to-end bounds that link the
composed confidence and the true chance of safety.

4.1 Model Requirements
From the modeling standpoint, we distinguish two subsystems of
the overarching system 𝑠: the unknown, true, “real” subsystem 𝑠∗

and the modeled, known subsystem 𝑠 that will undergo verification.
Systems 𝑠∗ and 𝑠 are compatible, i.e., they share the same 𝑋 , 𝑌 , 𝑈 ,
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and ℎ. The latter can be shared because we explicitly encode and
verify the NN controller in our model. We fix some safety property
𝜑 and verification method 𝑉𝑠,𝜑 and introduce the notion of safety
relevance between two compatible models.

Definition 2 (Safety-relevant model). A model 𝑠1 is safety-
relevant up to a bound 𝑒 for a compatible model 𝑠2 if it accounts for
the safe behaviors of 𝑠2 most of the time. Formally, for a random state
trace 𝒙 , safety property 𝜑 , and some small 𝑒 ∈ [0, 1],

Pr
(
𝜑 (𝒙) = T | 𝒙 ∈ 𝑿 (𝑠2) ∧ 𝒙 ∉ 𝑿 (𝑠1)

)
≤ 𝑒.

We expect the system model 𝑠 to be safety-relevant for the real
system 𝑠∗ and in that case just say it is safety-relevant. We also
expect 𝑠 to be verifiable.

Definition 3 (Verifiable model). Amodel 𝑠 is verifiable if there
is a non-trivial assumption 𝐴 (i.e., containing many states and/or
models) such that all traces of 𝑠𝐴 are safe:

∃𝐴, |𝐴| > 0 ∧𝑉𝑠,𝜑 (𝐴) = T.

Safety relevance intuitively means that we are unlikely to get a
safe trace not represented by our model. This gives verification an
opportunity to verify a system that “explains” a large part of truly
safe behaviors. Then, failing the verification would correspond to
a low true chance of safety. Without safety relevance, whether
verification holds may be orthogonal to whether the system is safe.

Verifiability of a sizeable set of assumptions is important because
if the model is safe only under trivial assumptions, few observed
traces would satisfy them. Then, the monitors would be forced to
alarm perpetually and, hence, poorly predict safety. For instance, if
we verified a system model only with zero measurement noise, a
monitor would almost always invalidate this model on a real system.
Verifiability is challenging to achieve due to the scalability and
uncertainty limits of over-approximating reachability algorithms.

There is a trade-off between safety relevance and verifiability:
expanding the set of explained behaviors leads to more parameters
and a larger scope of the model, making it harder to verify. In the
case studies, we negotiated this trade-off by starting with simple
verifiable low-dimensional models and iteratively extending their
relevance while preserving their verifiability.

4.2 Verification Assumptions
Assumptions are made to constrain the modeled system 𝑠 and pass
safety verification. For assumption monitoring to be useful, we
expect our assumptions to be sufficient and safety-relevant.

Definition 4 (Sufficient assumption). An assumption 𝐴 is
sufficient for property 𝜑 if the verification of 𝜑 on 𝑠 succeeds for 𝐴:

𝑉𝑠,𝜑 (𝐴) = T

Definition 5 (Safety-relevant assumption). An assumption
𝐴 applied to 𝑠 is safety-relevant up to some bound 𝑒 ∈ [0, 1] if the
subsystem 𝑠𝐴 is safety-relevant up to 𝑒 for 𝑠 as per Definition 2.

The sufficiency enables the system’s verification and is typically
straightforward to achieve via grid search. We partition the joint
space of initial states andmodel parameters into hypercubes, option-
ally simulate the model to quickly rule out the unsafe regions, and

then verify each remaining hypercube in parallel. The union of hy-
percubes where𝑉𝑠,𝜑 = T then becomes our sufficient assumption𝐴.

Notice that the safety-relevance of assumptions is defined anal-
ogously to the safety-relevance of the models, and for the same
reason: wewant assumption failures to correlate with safety failures.
The combined safety-relevance of the models and its assumptions
gives us a bound on the chance of true safety:

Theorem 1 (Bounded safety under failed assumptions). If
model 𝑠 is safety-relevant up to 𝑒1 and assumption 𝐴 is sufficient and
safety-relevant for 𝑠 up to 𝑒2, then the safety chance under violated
assumptions is bounded by 𝑒1 + 𝑒2. I.e., for a random trace 𝒙 ∈ 𝑿 (𝑠∗),

Pr
(
𝜑 (𝒙) = T | 𝒙 ∉ 𝑿 (𝑠𝐴)

)
≤ 𝑒1 + 𝑒2 .

Proof. See Appendix A. □

We also expect that the sufficient and safety-relevant assump-
tion can be monitored with the available monitors. Specifically,
we expect that we can find a monitorable decomposition of 𝐴 into
sub-assumptions 𝐴1 . . . 𝐴𝑛 such that (i) a propositional formula𝜓
ensures the original assumption:𝜓 (𝐴1 . . . 𝐴𝑛) =⇒ 𝐴, and (ii) for
each sub-assumption 𝐴𝑖 , there exists a monitor𝑀𝑖 with a (prefer-
ably tight) bound on 𝐸𝐶𝐸 and 𝐶𝐶𝐸.

The monitorable decomposition is a key idea behind this paper:
while it is difficult to build a monolithic monitor for the exact and
complete verification assumptions, it is possible to isolate moni-
torable sub-assumptions. We choose to decompose the assumption
using propositional logic because the logical operators directly cor-
respond to the set operations on the states and possible models.
Notice that𝜓 (𝐴1 . . . 𝐴𝑛) is required to imply𝐴 — not the other way
around — to ensure conservative monitoring:

Pr
(
𝜓 (𝐴1 . . . 𝐴𝑛)

)
≤ Pr(𝐴)

In practice, the choice of how to decompose assumptions de-
pends on the available information in the observations, the avail-
able monitoring techniques, and the scalability of monitors at run
time. Often, the logical structure arises from the hazard analysis of
the system. For example, if at least one of the redundant sensors
functions correctly, the system can guarantee performance. This
corresponds to a disjunction of the assumptions.

In our case studies, closed-loop reachability verification of hybrid
systems with NN controllers relies on three categories of assump-
tions, suggested by Definition 1. First, verification assumes that a
system starts in initial states from where it can avoid safety viola-
tions. Second, verification assumes that the reality is approximately
described by the dynamics equations, which are used to propagate
the reachable sets over time. Third, verification assumes that control
inputs are related to the true state by a constrained set of observation
models that capture known sensor uncertainties. An assumption
can span more than one category, and the particular decomposition
depends on the specifics of the model and available monitors.

4.3 Confidence Monitors
The goal is, for each sub-assumption 𝐴𝑖 , to obtain a confidence
monitor 𝑀𝑖 that estimates Pr(𝐴𝑖 | 𝒚) with bounded errors 𝐸𝐶𝐸
and 𝐶𝐶𝐸. In our case studies, we built a state estimation-based
monitor to determine whether the state at 𝑡 = 0 (or the current
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𝑡 ) was part of the verification assumptions. Another monitor de-
termines if the latest observations were consistent (up to some
error bound) with the dynamical model under bounded observa-
tion noise. Our monitors were based on the existing detection and
estimation techniques [5, 7]: Monte Carlo estimation using the dy-
namical model, particle filtering based on the dynamical model, and
statistical model invalidation.

The produced monitors are often miscalibrated. There is a trade-
off between reducing 𝐸𝐶𝐸 and 𝐶𝐶𝐸 of a monitor: a monitor with
small 𝐸𝐶𝐸 may sometimes overestimate the probability of an as-
sumption holding, leading to a sizeable 𝐶𝐶𝐸; on the other hand, a
conservative monitor may significantly underestimate the proba-
bility and, hence, have large 𝐸𝐶𝐸.

Since we treat monitors as black boxes, we reduce their calibra-
tion errors with post-hoc calibration, which requires a validation
dataset. Ideally, each monitor can use its own dataset without sam-
ples from other monitors, enabling independent development and
tuning of the monitors.

We calibrate each monitor𝑀𝑖 with Platt scaling [31], a popular
calibration technique, to produce a calibrated monitor 𝑀 ′

𝑖
. This

technique is based on a linear transformation of the monitor’s log-
odds (LO). For every monitor output𝑚, we compute the calibrated
value𝑚′ as follows:

𝑚′ =
1

1 + exp(𝑐 LO(𝑚) + 𝑑) , LO(𝑚) = log( 𝑚

1 −𝑚 ),

where 𝑐 and 𝑑 are calibration parameters to be determined.
To negotiate the tradeoff between 𝐸𝐶𝐸 and 𝐶𝐶𝐸, we fit calibra-

tion parameters 𝑐 and 𝑑 using weighted cross-entropy loss. The
weight 𝜆 ∈ [0, 1] sets the relative importance of 𝐶𝐶𝐸 over 𝐸𝐶𝐸 by
penalizing overconfidence (𝜆 = 0.5 in standard Platt scaling). The
fitting is done on a validation dataset containing pairs of monitor-
ing outputs𝑚 𝑗 and indicators 𝑎 𝑗 of the assumption holding at the
time: {(𝑚 𝑗 , 𝑎 𝑗 )}, and we fit over the calibrated scores𝑚′

𝑗
:

argmin
𝑐,𝑑

−
∑︁
𝑗

(1 − 𝜆)𝑎 𝑗 log(𝑚′
𝑗 ) + 𝜆(1 − 𝑎 𝑗 ) log(1 −𝑚

′
𝑗 ) (1)

4.4 Composition of Confidence Monitors
Our goal here is to build a compositional monitor𝑀𝐶 for 𝐴𝜓 given
𝑀1 . . . 𝑀𝑛 for 𝐴1 . . . 𝐴𝑛 and provide bounds on its calibration error.

Problem (Composition of Calibration Errors).
Given 𝐴𝜓 and𝑀1 . . . 𝑀𝑛 calibrated to 𝐴1 . . . 𝐴𝑛 with known bounds,
find function 𝐶 with bounds on 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) and 𝐶𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ).

To solve this problem in full generality, one would need to know
the joint distribution of random variables in what we call the moni-
toring probability space induced by D:

• Bernoulli variable Φ indicating the “safety event” 𝜑 (𝒙) = T.
We use Φ as an equivalent shorthand.

• Bernoulli variables 𝐴1 . . . 𝐴𝑛, and 𝐴𝜓 corresponding to the
satisfaction of assumptions and formula𝜓 (𝐴1 . . . 𝐴𝑛).

• Continuous variables𝑀1 . . . 𝑀𝑛 and𝑀𝐶 . corresponding to
the outputs of the monitors and their composition.

We will not assume knowing that joint distribution, nor shall we
try to estimate it. Instead, this paper takes an early step to solving
that problem by constraining it with judicious simplifications:

• We know the propositional formula𝜓 .
• Assumption monitors have bounded𝑀𝐶𝐸 and 𝐶𝐶𝐸.
• Assumptions are conditionally independent given composite
confidence, e.g., 𝐴𝑖⊥𝐴 𝑗 | 𝑀𝐶 .

• Given their monitor, assumptions are independent of com-
position: 𝐴𝑖⊥𝑀𝐶 | 𝑀𝑖 .

• Conditioning monitor variances on composition does not
increase them: Var(𝑀𝑖 | 𝑀𝐶 ) ≤ Var(𝑀𝑖 ).

The first two simplifications mirror the process of independent,
modular development of monitors. The conditional independence
of assumptions has been approximately true in our case studies and
is conservative unless the assumptions share a cause of violations.
Future work can investigate other assumption dependencies. (With-
out any information about assumption dependencies, formula𝜓 is
of limited use.) The fourth simplification indicates that a monitor
provides all the relevant information about its assumption, and com-
position has none to add. The last simplification, informally, states
the composite confidence is “informative” to monitors: knowing its
value limits the likely values of individual monitors. Although this
statement is difficult to prove, it has always held in our experiments.

The above enables the rest of the section to proceed in three steps:
(1) Identify plausible families of functions 𝐶 (Section 4.4.1)
(2) Provide bounds on 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) and 𝐶𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) given

calibration bounds of individual monitor (Section 4.4.2)
(3) Provide bounds on𝐸𝐶𝐸 (𝑀𝐶 ,Φ) and𝐶𝐶𝐸 (𝑀𝐶 ,Φ) given bounds

on𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) and𝐶𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) respectively (Section 4.5)
In the first two steps, we focus on the monitoring probability

sub-space without Φ:

Pr(𝐴1 . . . 𝐴𝑛, 𝐴𝜓 , 𝑀1 . . . 𝑀𝑛, 𝑀𝐶 )

Given the complexity of this sub-space, this paper analyzes
bounds on 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) and 𝐶𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) only for the scenario
with two assumptions (which proves sufficient in the case studies):

Pr(𝐴1, 𝐴2, 𝐴𝜓 , 𝑀1, 𝑀2, 𝑀𝐶 )

In the third step, we focus on the sub-space without the individ-
ual assumptions and monitors:

Pr(Φ, 𝐴𝜓 , 𝑀𝐶 )

4.4.1 Composition Functions. We identify composition functions
in two steps: equivalently simplifying the expression Pr(𝐴𝜓 ) and
proposing plausible functions for conjunctions of assumptions.

The structure of 𝐶 comes from the structure𝜓 . To determine 𝐶
for any𝜓 (𝑀1 . . . 𝑀𝑛), we simplify the expression Pr(𝜓 (𝑀1 . . . 𝑀𝑛))
by converting𝜓 (𝑀1 . . . 𝑀𝑛) to DNF and advancing1 the probability
operator until all probability operators are either over individual
assumptions or conjunctions of assumptions. We replace marginal
probabilities Pr(𝐴𝑖 ) with 𝑀𝑖 , so it is sufficient to determine 𝐶 for
conjunctions of assumptions — and the rest of the expression is
determined by the simplified version of Pr(𝐴𝜓 ).

In the rest of this section, we will take initial steps towards
addressing a key compositional sub-problem — providing functions
𝐶 and their calibration bounds for Pr(𝐴1 ∧𝐴2).

1Using standard identities such as the inclusion-exclusion principle, e.g., Pr(𝐴1∨𝐴2) =
Pr(𝐴1) + Pr(𝐴2) − Pr(𝐴1 ∧𝐴2) and Pr(¬𝐴1) = 1 − Pr(𝐴) .
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Problem (Binary Conjunctive Composition of 𝐸𝐶𝐸/𝐶𝐶𝐸).
Given𝑀1 and𝑀2 calibrated to 𝐴1 and 𝐴2 respectively, find function
𝐶 with bounds on 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴1 ∧𝐴2) and 𝐶𝐶𝐸 (𝑀𝐶 , 𝐴1 ∧𝐴2).

First, we obtain candidate functions𝐶 via plausible restrictions of
the probability space. Since these functions are difficult to compare
theoretically, we leave the task of finding the best composition
function for an arbitrary conjunction of assumptions for future
work. We do, however, compare them experimentally in Section 5.

Product: If one presumes that the assumptions are mutually
independent and monitors are perfectly calibrated, then:

Pr(𝐴1 ∧ · · · ∧𝐴𝑛) =
∏
𝑖=1..𝑛

Pr(𝐴𝑖 ) =
∏
𝑖=1..𝑛

𝑀𝑖

Thus, here 𝐶 (𝑀1 . . . 𝑀𝑛) =
∏
𝑖=1..𝑛𝑀𝑖 .

Weighted averaging: If we presume that the monitors inde-
pendently predict the combination of assumptions, then inverse-
variance weighting minimizes the variance of the estimate [15]:

Pr(𝐴1 ∧ · · · ∧𝐴𝑛) =
∑︁
𝑖=1..𝑛

𝑤𝑖𝑀𝑖 , 𝑤𝑖 =
1/𝑉𝑎𝑟 (𝑀𝑖 )∑

𝑗=1..𝑛 1/𝑉𝑎𝑟 (𝑀𝑗 )

Thus, here 𝐶 (𝑀1 . . . 𝑀𝑛) =
∑
𝑖=1..𝑛𝑤𝑖𝑀𝑖 ,

∑
𝑖=1..𝑛𝑤𝑖 = 1.

The above two functions are modular and driven by theoretical
considerations: they do not require information about the joint
distribution of monitors. We also propose two data-driven func-
tions that are not modular: they require samples from the joint
distribution of the monitors and assumptions. Due to their sample-
dependent performance, we do not derive the error bounds for them.

Logistic regression: This standard method treats the monitor
values as arbitrary features (not probabilities) that linearly predict
the log-odds of Pr(𝐴1 . . . 𝐴𝑛).

𝐶 (𝑀1 . . . 𝑀𝑛) =
1

1 + 𝑒−𝑤0−
∑

𝑖=1..𝑛 𝑤𝑖𝑀𝑖

Parameters𝑤0 . . .𝑤𝑛 are fit on data from𝑀1 . . . 𝑀𝑛 and𝐴𝜓 using
𝜆-weighted cross-entropy loss from Equation (1).

Sequential Bayes: if we know the joint density 𝑝 (𝑀1 . . . 𝑀𝑛)
and its conditioning on 𝐴1 ∧ · · · ∧ 𝐴𝑛 , our sequential Bayesian
estimator starts with a uniform prior 𝐶0 at 𝑡 = 0, and at time 𝑡 + 1
is updated as follows:

𝐶𝑡+1 (𝑀1 . . . 𝑀𝑛) = 𝐶𝑡 ·
Pr
(
𝑀1 . . . 𝑀𝑛 | 𝐴1 ∧ · · · ∧𝐴𝑛

)
Pr(𝑀1 . . . 𝑀𝑛)

4.4.2 Error bounds for composition functions. First, we note a use-
ful lemma that links assumption probabilities to monitor expecta-
tions. Then we bound 𝐸𝐶𝐸 for the product and weighted averaging
composition, and finally bound 𝐶𝐶𝐸 for the product composition.

Lemma 1 (Conditional Assumption Bounds).
For any composition function 𝐶 , if:

𝑀𝐶𝐸 (𝑀1, 𝐴1) ≤ 𝑒1, 𝑀𝐶𝐸 (𝑀2, 𝐴2) ≤ 𝑒2,
𝐴1⊥𝑀𝐶 | 𝑀1, 𝐴2⊥𝑀𝐶 | 𝑀2

Then:

E[𝑀1 | 𝑀𝐶 ] − 𝑒1 ≤ Pr(𝐴1 | 𝑀𝐶 ) ≤ E[𝑀1 | 𝑀𝐶 ] + 𝑒1
E[𝑀2 | 𝑀𝐶 ] − 𝑒2 ≤ Pr(𝐴2 | 𝑀𝐶 ) ≤ E[𝑀2 | 𝑀𝐶 ] + 𝑒2

Proof. See Appendix B. □

Theorem 2 (𝐸𝐶𝐸 bound for product composition). If:

𝑀𝐶 = 𝑀1𝑀2, 𝑀𝐶𝐸 (𝑀1, 𝐴1) ≤ 𝑒1, 𝑀𝐶𝐸 (𝑀2, 𝐴2) ≤ 𝑒2,
𝐴1⊥𝐴2 | 𝑀𝐶 , 𝐴1⊥𝑀𝐶 | 𝑀1, 𝐴2⊥𝑀𝐶 | 𝑀2,

Var(𝑀1 | 𝑀𝐶 ) ≤ Var(𝑀1), Var(𝑀2 | 𝑀𝐶 ) ≤ Var(𝑀2)
Then:

𝐸𝐶𝐸 (𝑀1𝑀2, 𝐴1 ∧𝐴2)

≤ max[4𝑒1𝑒2,
√︁
Var[𝑀1] Var[𝑀2] + 𝑒1 + 𝑒2 + 𝑒1𝑒2]

Proof. See Appendix C. □

The above bound is fairly narrow if themonitors arewell-calibrated
and have low variance. This suggests that product composition may
perform well in practice.

Theorem 3 (𝐸𝐶𝐸 bound for weighted averaging comp.). If:

𝑀𝐶 = 𝑤1𝑀1 +𝑤2𝑀2, 𝑤1 +𝑤2 = 1,
𝑀𝐶𝐸 (𝑀1, 𝐴1) ≤ 𝑒1, 𝑀𝐶𝐸 (𝑀2, 𝐴2) ≤ 𝑒2,
𝐴1⊥𝐴2 | 𝑀𝐶 , 𝐴1⊥𝑀𝐶 | 𝑀1, 𝐴2⊥𝑀𝐶 | 𝑀2

Then:

𝐸𝐶𝐸 (𝑤1𝑀1 +𝑤2𝑀2, 𝐴1 ∧𝐴2)
≤ max[𝑒1 + 𝑒2 + 𝑒1𝑒2, max[𝑤1,𝑤2] + 𝑒1 + 𝑒2 − 𝑒1𝑒2]

Proof. See Appendix D. □

Notice that the above 𝐸𝐶𝐸 bound for the averaging composition
is lower-bounded by 0.5. This reflects that under our precondition,
the proof is required to bound𝑤1𝑀1 +𝑤2𝑀2 −𝑀1𝑀2, which can
reach values at least as great as 0.5. This reflects the mismatch
between additive composition and conditionally independent as-
sumptions, and we do not expect it to perform well in our case
studies. Finding different conditions under which this 𝐸𝐶𝐸 bound
can be tightened remains for future work.

Theorem 4 (Conservatism bound for product comp.). If:

𝑀𝐶 = 𝑀1𝑀2, 𝐴1⊥𝐴2 | 𝑀𝐶 , 𝐴1⊥𝑀𝐶 | 𝑀1, 𝐴2⊥𝑀𝐶 | 𝑀2,

𝑀𝐶𝐸 (𝑀1, 𝐴1) ≤ 𝑒1, 𝑀𝐶𝐸 (𝑀2, 𝐴2) ≤ 𝑒2,
Then:

Pr(𝐴1, 𝐴2 | 𝑀𝐶 = 𝑥) ≥ max[0, 𝑥 − 𝑒1]max[0, 𝑥 − 𝑒2]

Proof. See Appendix E. □

This theorem shows that low-confidence outputs of product
composition should not be trusted to be conservative. It also mo-
tivates another composition function that we expect to be more
conservative:

Power Product:

Pr(𝐴1 ∧ · · · ∧𝐴𝑛) =
∏
𝑖=1..𝑛

(𝑀𝑖 )𝑛

Corollary 5 ( 𝐶𝐶𝐸 bound for product composition).
Under conditions of Theorem 4, 𝐶𝐶𝐸 (𝑀1𝑀2, 𝐴1 ∧𝐴2) is bounded by{(

𝑒21 − 2𝑒1 (−1 + 𝑒2) + (1 + 𝑒2)2
)
/4, if (1 + 𝑒1 + 𝑒2)/2 ∈ [0, 1]

𝑒1 + 𝑒2 − 𝑒1𝑒2, otherwise
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Proof.

𝐶𝐶𝐸 (𝑀1𝑀2) = max
𝑥 ∈[0,1]

[𝑥 − Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 = 𝑥)]

≤ max
𝑥 ∈[0,1]

[𝑥 −max[0, 𝑥 − 𝑒1]max[0, 𝑥 − 𝑒2]]

On interval 𝑥 ∈ [0,max[𝑒1, 𝑒2]], the maximum is achieved on
𝑥 = max[𝑒1, 𝑒2] and equal to max[𝑒1, 𝑒2].

On interval 𝑥 ∈ [max[𝑒1, 𝑒2], 1], we have 𝑓 (𝑥) = 𝑥 − (𝑥 −𝑒1) (𝑥 −
𝑒2) = −𝑥2 + (1+ 𝑒1 + 𝑒2)𝑥 − 𝑒1𝑒2, which is a quadratic function with
𝑓 ′′(𝑥) < 0. Therefore, its maximum on [0, 1] may be achieved only
in 𝑥 = max[𝑒1, 𝑒2], 𝑥 = 1, or when 𝑓 ′(𝑥) = 0. The former case is
above, leaving the other two. 𝑓 (1) = 𝑒1 + 𝑒2 − 𝑒1𝑒2, which can be
shown to be greater than max[𝑒1, 𝑒2], eliminating that bound.

Solving 𝑓 ′(𝑥0) = 0 for 𝑥0, we get:

𝑥0 = ((1 + 𝑒1 + 𝑒2)/2; 𝑓 (𝑥0) =
(
𝑒21 − 2𝑒1 (−1 + 𝑒2) + (1 + 𝑒2)2

)
/4

Thus, if (1 + 𝑒1 + 𝑒2)/2 ∈ [0, 1], we get the above bound, and
𝑒1 + 𝑒2 − 𝑒1𝑒2 otherwise.

□

When proving Theorem 4, we took advantage of a property of
product composition: the composed confidence is a lower bound of
each monitor confidence. This property is not present in the sum-
based compositions (averaging, logistic regression): given a compo-
sition value, one of the monitors may be arbitrarily small, and so the
probability of the (conditionally independent) assumptions can be
arbitrarily small as well. Hence, no general conservatism bound can
be provided for such compositions under our preconditions. It may
be possible provide it in special cases of assumption dependencies
or monitor distributions, which remain for future work.

4.5 End-to-End Bound on Calibration Error
Finally, we get to tie the CoCo framework together with the results
from Sections 4.1 to 4.4 and prove a key result of this paper : when
the requirements of our framework are satisfied, compositional
monitors have guaranteed upper bounds on 𝐸𝐶𝐸 and 𝐶𝐶𝐸. The
proofs can be found in Appendices F and G.

Theorem 6 (End-to-end bound on 𝐸𝐶𝐸). If the model is safety-
relevant up to 𝑒1, assumptions𝐴𝜓 are sufficient and safety-relevant up
to 𝑒2, and monitor 𝑀𝐶 is calibrated to 𝐴𝜓 with 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) ≤ 𝑒3,
then it is calibrated to Φ with bounded 𝐸𝐶𝐸 (𝑀𝐶 ,Φ):

𝐸𝐶𝐸 (𝑀𝐶 ,Φ) ≤ 𝑒1 + 𝑒2 + 𝑒3
Theorem 7 (End-to-end bound on 𝐶𝐶𝐸). If 𝐴𝜓 is a sufficient

assumption and 𝐶𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) ≤ 𝑒 , then 𝐶𝐶𝐸 (𝑀𝐶 ,Φ) ≤ 𝑒 .

Notice that the preconditions for the𝐶𝐶𝐸 bound are weaker due
to relying on formal verification with strong guarantees.

5 EVALUATION
The goal of our case studies is to evaluate the usefulness of the
CoCo framework as a whole (“does assumption monitoring predict
safety violations?”), the usefulness of confidence composition (“do
compositions outperform their constituents?”), and our ability to
improve conservatism (“how to reduce the𝐶𝐶𝐸 of compositions?”).

We perform two case studies: a mountain car getting up a hill
and an underwater vehicle tracking a pipeline. Each system has two

verification assumptions and two monitors. The studies differ in
several ways to show the flexibility of CoCo: the safety properties
are somewhat different (eventually vs always), the true model is
unknown to us in the second case study, initial-state assumptions
are combined differently with measurement assumptions, the state
assumption is evaluated at different times (𝑡 = 0 and current 𝑡 ), and
the state estimation monitors use different techniques.

Our plan is to execute each system and collect, for each monitor,
a dataset of 𝑁 monitor outputs, 𝑀 = {𝑚1 . . .𝑚𝑁 }, binary satis-
factions of the respective monitored assumption, 𝐴 = {𝑎1 . . . 𝑎𝑁 },
and true eventual binary safety outcomes (the chance of which the
monitor predicts indirectly), Φ̂ = {𝜙1 . . . 𝜙𝑁 }.

Our analysis will measure the binned approximations of the cal-
ibration errors from Section 2.2 on a uniform binning 𝐵1 . . . 𝐵𝐾 of
[0, 1] into 𝐾 = 10 confidence bins. We compare the average confi-
dence within each bin, conf (𝐵𝑘 ) := 1

|𝐵𝑘 |
∑
𝑖∈𝐵𝑘 𝑚𝑖 , with the rate of

assumption occurrence in that bin, occ(𝐵𝑘 ) := 1
|𝐵𝑘 |

∑
𝑖∈𝐵𝑘 𝑎𝑖 .

• Estimated expected calibration error: (𝐸𝐶𝐸)

𝐸𝐶𝐸 (𝑀,𝐴) :=
𝐾∑︁
𝑘=1

|𝐵𝑘 |
𝑁

| occ(𝐵𝑘 ) − conf (𝐵𝑘 ) |

• Estimated maximum calibration error: (�𝑀𝐶𝐸)�𝑀𝐶𝐸 (𝑀,𝐴) := max
𝑘∈𝐾

| occ(𝐵𝑘 ) − conf (𝐵𝑘 ) |

• Estimated conservatism error: (𝐶𝐶𝐸)

𝐶𝐶𝐸 (𝑀,𝐴) := max
𝑘∈𝐾

[conf (𝐵𝑘 ) − occ(𝐵𝑘 )]

To evaluate how calibrated𝑀 is to safety, 𝐴 is replaced with Φ̂
in the above definitions.

Calibration should not be evaluated in isolation from accuracy-
related measures; otherwise, a monitor could “cheat” by always
outputting an estimate of average probability — and thus give up its
ability to discriminate the outcomes. So, in addition to calibration
measures, we will provide two measures of accuracy:

• Estimated Brier Score (�𝐵𝑟𝑖𝑒𝑟 ) is a classic scoring rule for prob-
ability predictions [34, 50], a.k.a. the mean squared error:

�𝐵𝑟𝑖𝑒𝑟 (𝑀,𝐴) := 1
𝑁

𝑁∑︁
𝑖=1

(𝑚𝑖 − 𝑎𝑖 )2

• Area under Curve (𝐴𝑢𝐶) of the trade-off (ROC) curve between
the true positive and false positive rates, which manifests
when𝑀 is thresholded by every number between 0 to 1. It
is used to measure a classifier’s discrimination ability.

The case study data and the source code for its analysis are
available at https://github.com/bisc/coco-case-studies.

5.1 Mountain Car
The mountain car (MC) [24] is a standard reinforcement learning
benchmark where the task is to drive an underpowered car up a
hill from a valley. The controller needs to first drive the car up the
opposite hill so as to gather enough speed. Formally, the car has
two continuous states, position and velocity, both one-dimensional
in the horizontal direction, 𝒙 := (position 𝑝 , velocity 𝑣).

https://github.com/bisc/coco-case-studies
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Mountain Car Case Study UUV Case Study
Monitor Predicts �𝐸𝐶𝐸 �𝑀𝐶𝐸 �𝐶𝐶𝐸 �𝐵𝑟𝑖𝑒𝑟 �𝐴𝑢𝐶 �𝐸𝐶𝐸 �𝑀𝐶𝐸 �𝐶𝐶𝐸 �𝐵𝑟𝑖𝑒𝑟 �𝐴𝑢𝐶
𝑀1

𝐴1 0.021 ± 0.004 0.157 ± 0.04 0.152 ± 0.04 0.043 ± 0.002 0.987 ± 0.001 0.1 ± 0.02 0.41 ± 0.15 0.26 ± 0.15 0.176 ± 0.01 0.829 ± 0.009
Φ 0.285 ± 0.01 0.456 ± 0.02 0.456 ± 0.02 0.313 ± 0.01 0.699 ± 0.01 0.111 ± 0.04 0.399 ± 0.14 0.316 ± 0.12 0.202 ± 0.02 0.796 ± 0.01

𝑀2
𝐴2 0.157 ± 0.02 0.322 ± 0.04 0.278 ± 0.02 0.225 ± 0.004 0.764 ± 0.002 0.197 ± 0.06 0.317 ± 0.1 0.296 ± 0.11 0.224 ± 0.04 0.676 ± 0.02
Φ 0.241 ± 0.02 0.436 ± 0.01 0.436 ± 0.01 0.307 ± 0.004 0.674 ± 0.007 0.239 ± 0.06 0.327 ± 0.1 0.317 ± 0.1 0.261 ± 0.04 0.659 ± 0.02

𝑀1𝑀2
𝐴𝜓 0.087 ± 0.01 0.207 ± 0.01 0.207 ± 0.01 0.132 ± 0.003 0.887 ± 0.004 0.109 ± 0.02 0.343 ± 0.18 0.196 ± 0.12 0.184 ± 0.008 0.82 ± 0.02
Φ 0.129 ± 0.007 0.280 ± 0.04 0.18 ± 0.01 0.202 ± 0.004 0.784 ± 0.007 0.107 ± 0.03 0.343 ± 0.18 0.184 ± 0.12 0.182 ± 0.007 0.821 ± 0.009

𝑤1𝑀1 + 𝑤2𝑀2
𝐴𝜓 0.349 ± 0.02 0.659 ± 0.02 0.659 ± 0.02 0.266 ± 0.01 0.811 ± 0.003 0.212 ± 0.06 0.428 ± 0.1 0.428 ± 0.1 0.238 ± 0.03 0.813 ± 0.009
Φ 0.223 ± 0.01 0.467 ± 0.02 0.467 ± 0.02 0.244 ± 0.006 0.742 ± 0.004 0.188 ± 0.06 0.417 ± 0.1 0.417 ± 0.1 0.227 ± 0.03 0.807 ± 0.009

(𝑀1𝑀2)2 𝐴𝜓 0.092 ± 0.009 0.210 ± 0.02 0.204 ± 0.02 0.132 ± 0.004 0.887 ± 0.004 0.218 ± 0.07 0.342 ± 0.05 −0.038 ± 0.08 0.226 ± 0.03 0.82 ± 0.009
Φ 0.213 ± 0.01 0.428 ± 0.05 0.175 ± 0.01 0.234 ± 0.008 0.784 ± 0.007 0.239 ± 0.07 0.386 ± 0.06 −0.044 ± 0.08 0.235 ± 0.03 0.821 ± 0.009

LogReg(𝑀1, 𝑀2)
𝐴𝜓 0.049 ± 0.006 0.245 ± 0.04 0.108 ± 0.01 0.13 ± 0.003 0.867 ± 0.006 0.07 ± 0.03 0.331 ± 0.18 0.155 ± 0.08 0.173 ± 0.006 0.829 ± 0.008
Φ 0.129 ± 0.02 0.294 ± 0.03 −0.018 ± 0.03 0.212 ± 0.007 0.764 ± 0.008 0.079 ± 0.03 0.402 ± 0.18 0.143 ± 0.08 0.173 ± 0.006 0.829 ± 0.009

Bayes(𝑀1, 𝑀2)
𝐴𝜓 0.285 ± 0.02 0.679 ± 0.07 0.679 ± 0.07 0.286 ± 0.02 0.886 ± 0.02 0.141 ± 0.02 0.438 ± 0.07 0.27 ± 0.11 0.155 ± 0.02 0.914 ± 0.01
Φ 0.328 ± 0.01 0.572 ± 0.06 0.572 ± 0.06 0.331 ± 0.01 0.76 ± 0.02 0.14 ± 0.02 0.445 ± 0.07 0.22 ± 0.09 0.153 ± 0.02 0.917 ± 0.02

Table 1: Average monitor performance across 20 cross-validation runs with neutrally-weighed calibration (𝜆 = 0.5)

Mountain Car Case Study UUV Case Study
Monitor Predicts �𝐸𝐶𝐸 �𝑀𝐶𝐸 �𝐶𝐶𝐸 �𝐵𝑟𝑖𝑒𝑟 �𝐴𝑢𝐶 �𝐸𝐶𝐸 �𝑀𝐶𝐸 �𝐶𝐶𝐸 �𝐵𝑟𝑖𝑒𝑟 �𝐴𝑢𝐶
𝑀1

𝐴1 0.058 ± 0.006 0.405 ± 0.03 −0.002 ± 0.002 0.057 ± 0.004 0.987 ± 0.001 0.251 ± 0.05 0.506 ± 0.16 −0.039 ± 0.02 0.236 ± 0.02 0.825 ± 0.01
Φ 0.315 ± 0.009 0.465 ± 0.01 0.465 ± 0.01 0.329 ± 0.009 0.693 ± 0.01 0.191 ± 0.05 0.449 ± 0.18 0.002 ± 0.06 0.228 ± 0.02 0.793 ± 0.02

𝑀2
𝐴2 0.195 ± 0.008 0.548 ± 0.07 0.241 ± 0.009 0.236 ± 0.002 0.764 ± 0.002 0.096 ± 0.03 0.363 ± 0.28 0.099 ± 0.03 0.193 ± 0.006 0.671 ± 0.01
Φ 0.274 ± 0.008 0.475 ± 0.05 0.437 ± 0.01 0.316 ± 0.005 0.67 ± 0.007 0.125 ± 0.03 0.337 ± 0.2 0.162 ± 0.03 0.22 ± 0.006 0.653 ± 0.02

𝑀1𝑀2
𝐴𝜓 0.102 ± 0.008 0.231 ± 0.02 0.203 ± 0.009 0.137 ± 0.004 0.881 ± 0.004 0.287 ± 0.05 0.429 ± 0.05 −0.076 ± 0.02 0.277 ± 0.03 0.817 ± 0.01
Φ 0.223 ± 0.008 0.486 ± 0.04 0.176 ± 0.008 0.242 ± 0.006 0.779 ± 0.008 0.31 ± 0.05 0.46 ± 0.07 −0.08 ± 0.02 0.277 ± 0.03 0.818 ± 0.01

𝑤1𝑀1 + 𝑤2𝑀2
𝐴𝜓 0.229 ± 0.008 0.363 ± 0.009 0.363 ± 0.009 0.197 ± 0.002 0.826 ± 0.01 0.109 ± 0.03 0.272 ± 0.11 0.072 ± 0.09 0.185 ± 0.007 0.825 ± 0.01
Φ 0.172 ± 0.006 0.308 ± 0.04 0.228 ± 0.01 0.22 ± 0.003 0.749 ± 0.01 0.12 ± 0.04 0.281 ± 0.11 0.051 ± 0.08 0.186 ± 0.009 0.827 ± 0.01

(𝑀1𝑀2)2 𝐴𝜓 0.151 ± 0.006 0.431 ± 0.04 0.197 ± 0.01 0.157 ± 0.005 0.881 ± 0.004 0.443 ± 0.05 0.668 ± 0.05 −0.162 ± 0.03 0.394 ± 0.04 0.817 ± 0.01
Φ 0.273 ± 0.007 0.614 ± 0.02 0.169 ± 0.009 0.276 ± 0.006 0.779 ± 0.008 0.466 ± 0.05 0.67 ± 0.05 −0.164 ± 0.03 0.415 ± 0.04 0.818 ± 0.01

LogReg(𝑀1, 𝑀2)
𝐴𝜓 0.144 ± 0.01 0.447 ± 0.02 −0.059 ± 0.008 0.16 ± 0.006 0.868 ± 0.005 0.235 ± 0.05 0.472 ± 0.13 −0.044 ± 0.04 0.231 ± 0.02 0.826 ± 0.009
Φ 0.276 ± 0.009 0.481 ± 0.02 −0.237 ± 0.01 0.275 ± 0.007 0.761 ± 0.008 0.258 ± 0.05 0.569 ± 0.1 −0.048 ± 0.04 0.243 ± 0.02 0.827 ± 0.01

Table 2: Average monitor performance across 20 cross-validation runs with conservatively-weighed calibration (𝜆 = 0.8)

The car is considered safe if it gets to the top of the hill in 110
steps: 𝜑 := 𝑡 ≥ 110 =⇒ 𝑝 ≥ 0.45. The dynamics 𝐹𝑑 is as follows:

𝑝𝑘+1 = 𝑝𝑘 + 𝑣𝑘 , 𝑣𝑘+1 = 𝑣𝑘 + 0.0015𝑢𝑘 − 𝑧 ∗ 𝑐𝑜𝑠 (3𝑝𝑘 ),

where 𝑢𝑘 ∈ [−1, 1] is the controller’s output, and 𝑧 is the hill steep-
ness, sampled uniformly from two values: {0.0025, 0.0035}. Initial
position 𝑝0 is sampled uniformly from [−0.6,−0.4], and 𝑣0 = 0.

In our extension of the classic mountain car, noisy measurements
𝒚 := (estimated position 𝑝 , estimated velocity 𝑣) are obtained from
measurement models 𝐹𝑚 in which driving faster makes localization
more difficult, and being on a hillside biases the velocity estimates.
This model uses noise parameters 𝑐 and 𝑑 chosen uniformly from
[−1, 1] and [−0.01, 0.02], respectively:

𝑝𝑘 = 𝑝𝑘 + 𝑐𝑣𝑘 , 𝑣𝑘 = 𝑣𝑘 + 𝑑𝑝𝑘
We use a NN controller that was trained and verified in the

related work [18]. We extended its verification under two assump-
tions: 𝐴1 encodes the relation between the initial states and noise
parameters where the verification can guarantee as a predicate
over 𝑝0, 𝑐 , and 𝑑 ; 𝐴2 expects the execution to follow 𝐹𝑑 above with
𝑧 = 0.025 (less steep hill) and noise 𝑐 and 𝑑 from the intervals above,
up to a certain error bound. The car may fail due to violating either
assumption, leading to 𝐴𝜓 = 𝐴1 ∧𝐴2.

Monitoring 𝐴1 is performed by an initial Monte-Carlo sample of
triples (𝑝0, 𝑐, 𝑑) and gradually inferring their weights based on 𝐹𝑑
and the observations.𝑀1 outputs the weight fraction of the samples
that satisfy the predicate from 𝐴1. Monitoring 𝐴2 is performed by
statistically testing the consistency between 𝐹𝑑 , 𝐹𝑚 , and a trace
of last 6 observations using an existing tool ModelGuard [5]. The
confidence𝑀2 is either 1 when the model matches the execution

or the percentage of the model parameter space that was explored
and found to be inconsistent with the execution.

In data collection, we uniformly sample initial states, noise pa-
rameters, hill steepness 𝑧, and add white process noise (N (0, 0.001),
N(0, 0.0001)) to introduce a slight mismatch between our model
𝑠 and the “real” system 𝑠∗. We collected 2002 MC executions with
𝑁 = 196449 samples total.

5.2 Unmanned Underwater Vehicle
The second case study, is an unmanned underwater vehicle (UUV)
based on a challenge problem from the DARPA Assured Autonomy
program. The UUV follows an underwater pipeline and inspects it
for cracks. Here, the “real" system 𝑠∗ is implemented with a high-
fidelity UUV simulator based on the Robot Operating System [21].
We use a linearized identified dynamics model 𝐹𝑑 of the UUV. The
states are 𝒙 := (two-dimensional position 𝑝𝑥 , 𝑝𝑦 , heading 𝜃 , velocity
𝑣 , and 4 digital variables from system identification), and the pipe
coincides with 𝑥-axis. The measurement 𝒚 := (heading to the pipe
𝜃 , range to the pipe 𝑟 ) contains a sensor estimate of the heading
𝜃 , which is the angle formed between the UUV’s direction and the
positive 𝑥-axis. It also contains the range measurement 𝑟 which is
the distance to the horizontal pipeline at 𝑦 = 0, perpendicular to
the heading. The measurements are computed as:

𝑟𝑘 =
𝑝𝑦,𝑘

𝑐𝑜𝑠 (𝜃𝑘 )
, 𝜃𝑘 = 𝜃𝑘 + 𝐷u𝑘 ,

where the coefficient matrix 𝐷 =
[
0 0 . . . 𝑑

]𝑇 extracts the
controlled turn angle and multiplies with a noise parameter 𝑑 ∈
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[−0.1, 1.5]. Intuitively, 𝑑 approximates heading estimation delays
during turns, improving our model’s safety-relevance.

We consider the UUV safe at any time 𝑡 if for the next 30 seconds
its distance to pipe is within the side-looking sonar range (between
10m and 50m): 𝜑 := 𝑡 ≤ 𝑡 + 30 =⇒ 10 ≤ 𝑝𝑦 ≤ 50. Given these
measurements, we train a NN controller running at 0.5 Hz to follow
the pipe using the TD3 reinforcement learning algorithm [12].

Assumption 𝐴1 is a predicate over 𝑝𝑦 and 𝜃 where the verifica-
tion succeeded. We monitor it with a particle filter, which propa-
gates particles (𝑝𝑦, 𝜃 ) over time.𝑀1 outputs the weight fraction of
the current particles within the𝐴1.𝐴2 expects the system to behave
consistently with our 𝐹𝑑 and 𝐹𝑚 with 𝑑 ∈ [−0.1, 1.5] based on 4 lat-
est observation steps, and𝑀2 is analogous to𝑀2 for MC. A conjunc-
tion of these assumptions proved sufficient for safety:𝐴𝜓 = 𝐴1∧𝐴2.

Our scenario is the UUV heading towards the pipe and needing to
make a sharp left turn before 𝑝𝑦 < 10. We sample 𝑝𝑦,0 between 12m
and 22m and 𝜃0 between 5 and 25 degrees, some of which violate𝐴1.
We also introduce a 33% chance of a fin getting stuck and limiting
the turn rate, which violates 𝐴2 and makes the UUV less likely to
maintain safety. We collected 194 UUV executions and evaluated
the safety predictions in the first 20 seconds of each (𝑁 = 3880).

5.3 Results
We experiment with two calibration settings: neutral (𝜆 = 0.5) and
conservative (𝜆 = 0.8). In each, the monitors are evaluated with
50-50 cross-validation: tuned on a randomly chosen half of the
data and tested on the rest. On the validation set, the monitors
𝑀1,𝑀2 are individually calibrated with Platt scaling and composed
into product, weighted average (weights set inverse to the post-
calibration variance), and the product-squared (the two-monitor
version of power product). The other two methods use the joint
monitor-assumption data: logistic regression fits monitor outputs
to 𝐴𝜓 , and Bayes estimates Pr(𝑀1, 𝑀2 | 𝐴𝜓 ) with histograms.

We present the monitor evaluations in Table 1 (𝜆 = 0.5) and
Table 2 (𝜆 = 0.8). Each table contains the means and standard devia-
tions of monitor errors and scores after 20 cross-validations. Notice
two caveats: (i) 𝑀1 and 𝑀2 predict 𝐴1 and 𝐴2, not 𝐴𝜓 , (ii) since
Bayes is not affected by 𝜆, it is omitted from Table 2. What follows
is our observations and interpretations, mostly based on Table 1.

Framework predicts safety: compositional monitors show
𝐴𝑢𝐶 above 0.7 in the MC case and above 0.8 in the UUV case. 𝐸𝐶𝐸
stays within 0.1 − 0.2, explained in part by the difficulty of calibrat-
ing𝑀2, which tends to take extreme values. The good composite
calibration is supported by the high safety relevance of our assump-
tions: on traces with ¬𝐴𝜓 , the safety chances are 18% for the MC
and 6% for the UUV. Brier scores are relatively high because our
“true probabilities” are 0s and 1s, which penalized the predictions in
the middle of [0, 1] — even when well-calibrated and discriminative.

Compositions outperform constituents: when predicting
safety (Φ), all compositional monitors have a higher 𝐴𝑢𝐶 than𝑀1
and𝑀2, and most have a higher 𝐸𝐶𝐸. We note that compositions
have higher uncertainty, which drives up their �𝐵𝑟𝑖𝑒𝑟 scores.

Data-driven compositions outperform thenon-data-driven:
logistic regression shows the best 𝐸𝐶𝐸 on both case studies, and
Bayes dominates the 𝐴𝑢𝐶 in most cases. This outcome is expected
given their information advantage. Among the non-data-driven

compositions, as predicted by our theorems, the product outper-
forms the weighted average across all metrics in Table 1.

Compositions are tunable for conservatism: as per Table 2,
the product and product-squared compositions improved their𝐶𝐶𝐸
with 𝜆 = 0.8 in the UUV case, as expected. Logistic regression got
more conservative in both cases studies, which motivates trying
to mimic its benefits without joint data. Surprisingly, the product
and product-squared did not respond to conservative tuning in the
MC case. Our investigation showed that although𝑀2 got more con-
servative on average, its predictions with ≥90% confidence got less
conservative. This suggests future work in calibration techniques
with conservative guarantees and using confidence monitoring
as an early warning rather than a final arbiter of safety. Product-
squared failed to improve conservatism for the MC due to a similar
reason: the overconfidence occurred in the bin [0.9, 1]. Generally,
we observe a trade-off between conservatism and calibration, and
given that weighted average is the least conservative composition,
it predictably improves its performance from 𝜆 = 0.5 to 𝜆 = 0.8.

6 DISCUSSION AND CONCLUSION
Our theoretical and empirical investigation highlighted the dis-
tinct advantages of the proposed CoCo framework. First, unlike
many assurance methods, it does not require a detailed or complete
enumeration/model of hazards and failure modes. As long as the
models and assumptions are safety-relevant, and the monitors are
well-calibrated and accurate, the composite monitor should detect
any potential violation of safety. Second, it is not tied to specific
closed-form distributions — at most, our bounds only require the
knowledge of the calibration bounds and monitor variance. Third,
the non-data-driven compositions support independent develop-
ment of monitors without the need for combined tuning. However,
if joint monitor data is available, compositions based on logistic
regression and Bayesian estimation can take advantage of it.

This paper is but an early step in compositional confidence mon-
itoring, opening several exciting research directions. First, richer
models of assumption dependencies (e.g., copulas [26]) may enable
new composition functions (e.g., based on known odds or correla-
tions) and tighten the bounds on the existing ones. Second, extend-
ing the composition bounds to 3+ monitors and new composition
functions is mathematically challenging, but it can be facilitated by
detailed models of monitor dependencies. Another fruitful direc-
tion is empirical validation and refinement of the simplifications
made in Section 4.4. Since it is difficult to decompose assumptions, it
would be useful to create verification techniques that make granular
assumptions bottom-up. Finally, a longer-term goal would be to ex-
tend the scope of a confidence monitor by considering its temporal
behavior and monitoring the assumptions of other monitors [16].

To conclude, this paper presented an approach for run-time
safety prediction by monitoring confidence in the assumptions of
formal verification. The proposed CoCo framework introduced
theoretical requirements for compositional bounds on calibration
errors, and instantiated these bounds for two composition func-
tions. Two case studies demonstrated the practical usefulness of
CoCo. Furthermore, we observed that the compositions can adjust
their conservatism, as well as improve their performance given
synchronized data about multiple monitors and assumptions.
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APPENDIX
This appendix contains the proofs of our theorems.

A PROOF OF THEOREM 1
Proof. Throughout this proof, we use the fact that 𝒙 ∉ 𝑿 (𝑠) =⇒

𝒙 ∉ 𝑿 (𝑠𝐴) , hence Pr(𝒙 ∉ 𝑿 (𝑠)) ≤ Pr(𝒙 ∉ 𝑿 (𝑠𝐴)) .

Pr(𝜑 (𝒙) = T | 𝒙 ∉ 𝑿 (𝑠𝐴))
= Pr(𝜑 (𝒙) = T ∧ 𝒙 ∈ 𝑿 (𝑠) | 𝒙 ∉ 𝑿 (𝑠𝐴))

+ Pr(𝜑 (𝒙) = T ∧ 𝒙 ∉ 𝑿 (𝑠) | 𝒙 ∉ 𝑿 (𝑠𝐴))

The first summand is bounded by 𝑒2 because𝐴 is safety-relevant:

Pr(𝜑 (𝒙) = T ∧ 𝒙 ∈ 𝑿 (𝑠) | 𝒙 ∉ 𝑿 (𝑠𝐴))
= Pr(𝜑 (𝒙) = T | 𝒙 ∈ 𝑿 (𝑠) ∧ 𝒙 ∉ 𝑿 (𝑠𝐴)) Pr(𝒙 ∈ 𝑿 (𝑠) | 𝒙 ∉ 𝑿 (𝑠𝐴))
≤ Pr(𝜑 (𝒙) = T | 𝒙 ∈ 𝑿 (𝑠) ∧ 𝒙 ∉ 𝑿 (𝑠𝐴)) ≤ 𝑒2

For the second summand, we apply Bayes’ theorem:

Pr(𝜑 (𝒙) = T ∧ 𝒙 ∉ 𝑿 (𝑠) | 𝒙 ∉ 𝑿 (𝑠𝐴))

=
Pr(𝒙 ∉ 𝑿 (𝑠𝐴) | 𝜑 (𝒙) = T ∧ 𝒙 ∉ 𝑿 (𝑠)) Pr(𝜑 (𝒙) = T ∧ 𝒙 ∉ 𝑿 (𝑠))

Pr(𝒙 ∉ 𝑿 (𝑠𝐴))

=
Pr(𝜑 (𝒙) = T ∧ 𝒙 ∉ 𝑿 (𝑠))

Pr(𝒙 ∉ 𝑿 (𝑠𝐴))

Recall that 𝒙 ∈ 𝑿 (𝑠∗) by the precondition of the theorem and
thus Pr(𝜑 (𝒙) = T | 𝒙 ∉ 𝑿 (𝑠)) = Pr(𝜑 (𝒙) = T | 𝒙 ∉ 𝑿 (𝑠), 𝒙 ∈ 𝑿 (𝑠∗))
Then, by the safety relevance of 𝑠 , the above fraction is bounded:

Pr(𝜑 (𝒙) = T | 𝒙 ∉ 𝑿 (𝑠))Pr(𝒙 ∉ 𝑿 (𝑠))
Pr(𝒙 ∉ 𝑿 (𝑠𝐴))

≤ 𝑒1
Pr(𝒙 ∉ 𝑿 (𝑠))
Pr(𝒙 ∉ 𝑿 (𝑠𝐴))

≤ 𝑒1

□

B PROOF OF LEMMA 1
Proof. We will build up the bounds for the expression under

the expectation. Suppose monitors𝑀1 and𝑀2 have probability den-
sities p1 (𝑥) and p2 (𝑦). From𝑀𝐶𝐸 bounds, integration, and our con-
ditional independence of assumptions and monitors, for𝑀1 we get:

𝑥 − 𝑒1 ≤ Pr(𝐴1 | 𝑀1 = 𝑥) ≤ 𝑥 + 𝑒1,∫ 1
0 (𝑥 − 𝑒1)p1 (𝑥 | 𝑀𝐶 )𝑑𝑥 ≤

∫ 1
0 Pr(𝐴1 | 𝑀1 = 𝑥)p1 (𝑥 | 𝑀𝐶 )𝑑𝑥

≤
∫ 1
0 (𝑥 + 𝑒1)p1 (𝑥 | 𝑀𝐶 )𝑑𝑥,

E[𝑀1 | 𝑀𝐶 ] − 𝑒1 ≤ Pr(𝐴1 | 𝑀𝐶 ) ≤ E[𝑀1 | 𝑀𝐶 ] + 𝑒1 (2)

Analogously, for𝑀2:

E[𝑀2 | 𝑀𝐶 ] − 𝑒2 ≤ Pr(𝐴2 | 𝑀𝐶 ) ≤ E[𝑀2 | 𝑀𝐶 ] + 𝑒2 (3)

□

C PROOF OF THEOREM 2
Proof. From conditional independence:

𝐸𝐶𝐸 (𝑀𝐶 , 𝐴1 ∧𝐴2) = E[ |Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | ])
= E[ |Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | ])

We split the proof into three cases:

(1) Event 𝐻1: E[𝑀1 | 𝑀𝐶 ] ≥ 𝑒1 and E[𝑀2 | 𝑀𝐶 ] ≥ 𝑒2
(2) Event 𝐻2: E[𝑀1 | 𝑀𝐶 ] < 𝑒1 and E[𝑀2 | 𝑀𝐶 ] < 𝑒2
(3) Event 𝐻3: E[𝑀1 | 𝑀𝐶 ] < 𝑒1 xor E[𝑀2 | 𝑀𝐶 ] < 𝑒2

Then the expectation can be split accordingly:

E[ |Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | ]) (4)

=

3∑︁
𝑖=1

Pr(𝐻𝑖 ) E[ |Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | | 𝐻𝑖 ]

To complete the proof, with the help of Lemma 1, we need to
show that we can bound the conditional expectation by at least one
term in the max under each case, i.e., for each 𝑖

E[ |Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | | 𝐻𝑖 ] (5)

= max[4𝑒1𝑒2,
√︁
Var[𝑀1 ] Var[𝑀2 ] + 𝑒1 + 𝑒2 + 𝑒1𝑒2 ]

For the sake of brevity, let 𝐸1 := E[𝑀1 | 𝑀𝐶 ] and 𝐸2 := E[𝑀2 | 𝑀𝐶 ].
Case 𝐻1:
Our 𝐻1 restrictions allows multiplying inequalities (2) and (3)

because all sides are non-negative:

(𝐸1 − 𝑒1) (𝐸2 − 𝑒2) ≤ Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) ≤ (𝐸1 + 𝑒1) (𝐸2 + 𝑒2),

and then subtract𝑀𝐶 :

(𝐸1 − 𝑒1) (𝐸2 − 𝑒2) −𝑀𝐶 ≤ Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) −𝑀𝐶

≤ (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶

Taking the absolute value, using max inequality, and triangle in-
equality we get a bound on the expression under the expectation:

|Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) −𝑀𝐶 |

≤ max
[
| (𝐸1 − 𝑒1) (𝐸2 − 𝑒2) −𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 |

]
Nowwe use two facts:𝑀𝐶 = 𝑀1𝑀2 and E[𝑀1 ] E[𝑀2 ] = E[𝑀1𝑀2 ] −

Cov[𝑀1, 𝑀2 ]. Then, we can proceed with the triangle inequality:

max
[
| (𝐸1 − 𝑒1) (𝐸2 − 𝑒2) −𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 |

]
= max

[
| Cov[𝑀1, 𝑀2 |𝑀𝐶 ] − 𝑒1𝑒2 + 𝑒1𝐸2 + 𝑒2𝐸1 |,

| Cov[𝑀1, 𝑀2 |𝑀𝐶 ] − 𝑒1𝑒2 − 𝑒1𝐸2 − 𝑒2𝐸1 |
]

≤ | Cov[𝑀1, 𝑀2 |𝑀𝐶 ] | + 𝑒1𝐸2 + 𝑒2𝐸1 + 𝑒1𝑒2

Using the Cauchy-Schwarz inequality, our assumption on vari-
ances, and the fact that 𝐸1 ≤ 1, 𝐸2 ≤ 1 we get the final bound under
Case 𝐻1:

| Cov[𝑀1, 𝑀2 |𝑀𝐶 ] | + 𝑒1𝐸2 + 𝑒2𝐸1 + 𝑒1𝑒2
≤
√︁
Var[𝑀1 ] Var[𝑀2 ] + 𝑒1 + 𝑒2 + 𝑒1𝑒2

Case 𝐻2: Recalling that 𝑀𝐶 = 𝑀1𝑀2, note that

𝑀𝐶 ≤ 𝐸1 < 𝑒1, (6)

since 𝑀1 ≥ 𝑀𝐶 everywhere. Also note that (2) now becomes

0 ≤ Pr(𝐴1 | 𝑀𝐶 ) ≤ 2𝑒1 . (7)

Similarly, (6) becomes

|Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) −𝑀𝐶 | ≤ max[ | −𝑀𝐶 |, |4𝑒1𝑒2 −𝑀𝐶 | ]
≤ max[𝑒1, 𝑒2, 4𝑒1𝑒2 ] .

Note that both 𝑒1 and 𝑒2 are smaller than the bound under 𝐻1,
hence we only keep 4𝑒1𝑒2 in the final bound.

Case 𝐻3: Without loss of generality, consider the case when
𝐸1 < 𝑒1 and 𝐸2 ≥ 𝑒2. Then once again (2) becomes

0 ≤ Pr(𝐴1 | 𝑀𝐶 ) ≤ 2𝑒1 . (8)
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The bound in Equation (6) is now simplified only on one side:
|Pr(𝐴1 | 𝑀𝐶 )Pr(𝐴2 | 𝑀𝐶 ) −𝑀𝐶 |

≤ max[ | −𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 | ]

≤ max[𝑒1,
√︁
Var[𝑀1 ] Var[𝑀2 ] + 𝑒1 + 𝑒2 + 𝑒1𝑒2 ] .

The case 𝐸1 ≥ 𝑒1 and 𝐸2 < 𝑒2 is symmetric. □

D PROOF OF THEOREM 3
Proof. Following the same structure as Theorem 2, the proof is

split into three cases:
(1) Event 𝐻1: E[𝑀1 | 𝑀𝐶 ] ≥ 𝑒1 and E[𝑀2 | 𝑀𝐶 ] ≥ 𝑒2
(2) Event 𝐻2: E[𝑀1 | 𝑀𝐶 ] < 𝑒1 and E[𝑀2 | 𝑀𝐶 ] < 𝑒2
(3) Event 𝐻3: E[𝑀1 | 𝑀𝐶 ] < 𝑒1 xor E[𝑀2 | 𝑀𝐶 ] < 𝑒2
Then we again split the expectation into (4). To complete the

proof, with the help of Lemma 1, we need to show that we can
bound the conditional expectation by at least one term in the max
under each case. For the sake of brevity, let 𝐸1 := E[𝑀1 | 𝑀𝐶 ] and
𝐸2 := E[𝑀2 | 𝑀𝐶 ].

Case 𝐻1 for averaging:
max

[
| (𝐸1 − 𝑒1) (𝐸2 − 𝑒2) −𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 |

]
= max

[
| (𝐸1 − 𝑒1) (𝐸2 − 𝑒2) − 𝑤1𝐸1 − 𝑤2𝐸2 |,

| (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) − 𝑤1𝐸1 − 𝑤2𝐸2 |
]

Now note that max[a, |b|] = max[a, b, -b], and also note that in
our case, a > -b:
max

[
𝑤1𝐸1 + 𝑤2𝐸1 − (𝐸1 − 𝑒1) (𝐸2 − 𝑒2),

| (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) − 𝑤1𝐸1 − 𝑤2𝐸2 |
]

= max
[
𝑤1𝐸1 + 𝑤2𝐸2 − (𝐸1 − 𝑒1) (𝐸2 − 𝑒2),

(𝐸1 + 𝑒1) (𝐸2 + 𝑒2) − 𝑤1𝐸1 − 𝑤2𝐸2
]

= max
[
𝑤1𝐸1 + 𝑤2𝐸2 − 𝐸1𝐸2 + 𝑒2𝐸1 + 𝑒1𝐸2 − 𝑒1𝑒2,

𝐸1𝐸2 − 𝑤1𝐸1 − 𝑤2𝐸2 + 𝑒2𝐸1 + 𝑒1𝐸2 + 𝑒1𝑒2
]

The final step is to recognize that𝑤1𝑎+𝑤2𝑏−𝑎𝑏 ∈ [0,max[𝑤1, 𝑤2 ] ].
This can be revealed by solving an optimization problem. Thus, we
can bound the first expression above with:

max[max[𝑤1, 𝑤2 ] + 𝑒1 + 𝑒2 − 𝑒1𝑒2, 𝑒1 + 𝑒2 + 𝑒1𝑒2 ]

Case 𝐻2 for averaging: Here, we are bounded by
max

[
|𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 |

]
,

which is itself bounded by 𝑀𝐶 since the values in the second
argument are both positive. Hence,𝑀𝐶 = 𝑤1𝐸1 +𝑤2𝐸2 ≤ 𝑤1𝑒1 +𝑤2𝑒2.
This bound is dominated by 𝑒1 + 𝑒2 + 𝑒1𝑒2 from case 𝐻1.

Case 𝐻3 for averaging: Suppose 𝐸1 ≤ 𝑒1, 𝐸2 ≥ 𝑒2. Then we need
to bound:
max

[
|𝑀𝐶 |, | (𝐸1 + 𝑒1) (𝐸2 + 𝑒2) −𝑀𝐶 |

]
= 𝑀𝐶 = 𝑤1𝐸1 + 𝑤2𝐸2 ≤ 𝑤1𝑒1 + 𝑒2

Analogously, in the alternative case the bound is 𝑒1 + 𝑤2𝑒2. Both of
these bounds are lower than 𝑒1 + 𝑒2 + 𝑒1𝑒2 from case 𝐻1.

Similar to the product bound proof, the ultimate bound is:
max[𝑒1 + 𝑒2 + 𝑒1𝑒2,max[𝑤1, 𝑤2 ] + 𝑒1 + 𝑒2 − 𝑒1𝑒2 ]

□

E PROOF OF THEOREM 4
Proof. When 𝑀𝐶 = 𝑥 = 𝑀1𝑀2, it is clear that 𝑀1 ≥ 𝑥,𝑀2 ≥ 𝑥

because monitors take values between 0 and 1. It follows that:
E[𝑀1 | 𝑀1𝑀2 = 𝑥 ] ≥ 𝑥, E[𝑀2 | 𝑀1𝑀2 = 𝑥 ] ≥ 𝑥

Following Lemma 1, we can see that:
Pr(𝐴1 | 𝑀𝐶 = 𝑥) ≥ E[𝑀1 | 𝑀1𝑀2 = 𝑥 ] − 𝑒1 ≥ 𝑥 − 𝑒1
Pr(𝐴2 | 𝑀𝐶 = 𝑥) ≥ E[𝑀1 | 𝑀1𝑀2 = 𝑥 ] − 𝑒2 ≥ 𝑥 − 𝑒2

To ensure multiplicability:
Pr(𝐴1 | 𝑀𝐶 = 𝑥) ≥ max[0, 𝑥 − 𝑒1 ]
Pr(𝐴2 | 𝑀𝐶 = 𝑥) ≥ max[0, 𝑥 − 𝑒2 ]

Therefore:
Pr(𝐴1 ∧𝐴2 | 𝑀𝐶 = 𝑥) ≥ max[0, 𝑥 − 𝑒1 ]max[0, 𝑥 − 𝑒2 ]

□

F PROOF OF THEOREM 6
Proof.

𝐸𝐶𝐸 (𝑀𝐶 ,Φ) = E[ |Pr(Φ | 𝑀𝐶 ) −𝑀𝐶 | ]
= E[ |Pr(Φ | 𝑀𝐶 ) −𝑀𝐶 | ] − 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 ) + 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 )
= E[ |Pr(Φ | 𝑀𝐶 ) −𝑀𝐶 | ] − E[ |Pr(𝐴𝜓 | 𝑀𝐶 ) −𝑀𝐶 | ] + 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 )
≤ E[ |Pr(Φ | 𝑀𝐶 ) − Pr(𝐴𝜓 | 𝑀𝐶 ) | ] + 𝐸𝐶𝐸 (𝑀𝐶 , 𝐴𝜓 )

The second summand is bounded by 𝑒3 by the condition of the
theorem. Consider now the first summand:
E[ |Pr(Φ | 𝑀𝐶 ) − Pr(𝐴𝜓 | 𝑀𝐶 ) | ]

= E[ |Pr(Φ ∧𝐴𝜓 | 𝑀𝐶 ) + Pr(Φ ∧ ¬𝐴𝜓 | 𝑀𝐶 )
− Pr(𝐴𝜓 ∧ Φ | 𝑀𝐶 ) − Pr(𝐴𝜓 ∧ ¬Φ | 𝑀𝐶 ) | ]

= E[ |Pr(Φ ∧ ¬𝐴𝜓 | 𝑀𝐶 ) − Pr(𝐴𝜓 ∧ ¬Φ | 𝑀𝐶 ) | ]

Note that Pr(𝐴𝜓 ∧¬Φ | 𝑀𝐶 ) = 0 because𝐴𝜓 is sufficient for proving
safety and thus 𝐴𝜓 and ¬Φ are mutually exclusive, leaving us with:
E[ |Pr(Φ ∧ ¬𝐴𝜓 | 𝑀𝐶 ) | ] = Pr(Φ ∧ ¬𝐴𝜓 ) = Pr(Φ | ¬𝐴𝜓 )Pr(¬𝐴𝜓 )

≤ Pr(Φ | ¬𝐴𝜓 ) ≤ 𝑒1 + 𝑒2,

where the last bound 𝑒1 + 𝑒2 is a result of Theorem 1. □

G PROOF OF THEOREM 7
Proof.
max

𝑥∈[0,1]
[𝑥 − Pr(Φ | 𝑀𝐶 = 𝑥) ]

= max
𝑥∈[0,1]

[𝑥 − Pr(𝐴 | 𝑀𝐶 = 𝑥)Pr(Φ | 𝐴,𝑀𝐶 = 𝑥)

− Pr(¬𝐴 | 𝑀𝐶 = 𝑥)Pr(Φ | ¬𝐴,𝑀𝐶 = 𝑥) ]
≤ max

𝑥∈[0,1]
[𝑥 − Pr(𝐴 | 𝑀𝐶 = 𝑥) ] ≤ 𝑒

We are justified in using the upper boundmax𝑥∈[0,1] [𝑥−Pr(𝐴 | 𝑀𝐶 =

𝑥) ] as a conservative approximation because (i) 𝐴 is sufficient, so
Pr(Φ | 𝐴,𝑀𝐶 = 𝑥) = 1, and (ii) the last summand Pr(¬𝐴 | 𝑀𝐶 =

𝑥) · Pr(Φ | ¬𝐴,𝑀𝐶 = 𝑥) is non-negative. □
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