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Abstract. Design-time approaches to safety assurance for autonomous
systems are limited because they must rely on assumptions about the be-
haviors of learned components in previously unseen environments. These
assumptions may be violated at run time, thus invalidating the guaran-
tees produced at design time. To overcome this limitation, we propose to
complement design-time assurance with run-time monitoring that calcu-
lates the confidence that those assumptions are satisfied and, therefore,
design-time guarantees continue to hold. As the first step in our vision, we
elicit the logical relationship between assumption violations and safety
violations. Then, we develop a probabilistic confidence monitor for each
design-time assumption. Finally, we compose these assumption monitors
based on their logical relation to safety violations, producing a system-
wide assurance monitor. Our vision is illustrated with a case study of an
autonomous underwater vehicle that performs pipeline inspection.

1 Introduction and motivation

A clear technological trend emerged in the past decade: safety-critical systems,
such as cars, airplanes, and other vehicles, are becoming increasingly autonomous.
The assurance for these systems is becoming increasingly complex for two rea-
sons. First, safety-critical systems often operate in environments that have not
been anticipated at design time. The systems now have to understand these
newly encountered environments and respond to them in a safe manner. Second,
these systems rely on machine learning in various modules, including perception,
planning, and control, yielding black-box implementations with high-dimensional
inputs. Traditionally, design-time guarantees of safety require modeling the sys-
tem and its environment, and models are carefully validated to ensure sufficient
fidelity. However, the models of the learning-enabled components as well as de-
tailed environment models cannot be fully validated at design time.

We certainly cannot abandon design-time assurance, but we can complement
it with run-time assurance techniques. Several arguments for run-time assurance
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articulated the need for comprehensive self-assessment of mission progress by an
autonomous system [2, 9]. It is typical to deploy safety monitoring systems across
the system, supported by rigorous systems of monitor generation [6, 10]. Such
safety monitors tend to be defined in terms of thresholds over the system’s state
variables, with a fixed tolerance margin. For example, a collision warning monitor
may, in effect, say “you are close to an obstacle and moving too fast towards it.”
The confidence in such warnings is derived from the pre-determined margin and
does not account for unpredictable situations and noisy/missing inputs. This
confidence can be improved by predictive safety monitoring [1, 12], which takes
into account future behaviors, and combining monitors with state estimators [15],
which account for perception/control uncertainties within a limited time horizon.

The challenge is that such advanced monitors also rely on the very models
of the system dynamics and perception that we are trying to validate in the
first place. The drawback we see in these monitoring approaches is that they do
not take into account all of the hard work that went into design-time assurance
of those models; instead, they try to estimate the confidence in the mission
progress directly from the observations. In this paper, we are advocating for a
different approach to run-time assurance, one that builds upon modern model-
based verification technologies. The question we are asking at run time is: based
on what we observe, how confident are we that our verification guarantees still
imply that the system will succeed in its mission?

Our approach investigates, at design time, how the design-time verification
guarantees can be invalidated at run time. The process of eliciting these poten-
tial problems is similar to the traditional hazard analysis [11, 5], but instead of
hazards introduced by component failures, we consider the hazards introduced
by the limitations of design-time verification technologies. Specifically, we focus
on the assumptions that are by necessity made at design time to enable verifi-
cation. If an assumption is violated, the guarantee may become invalid as well.
We consider examples of such assumptions below in the running example.

We note that a violated assumption does not, by itself, mean that the mission
is compromised. However, as long as the assumptions are not violated, we know
that design-time guarantees hold. Therefore, if we identify all the assumptions
subject to violation, our confidence in them can be used as a lower bound on the
probability that the system’s mission is on track.

Illustrative example. Consider a simple example of an autonomous underwater
vehicle (AUV) that inspects a pipeline on an ocean floor. This example was used
as a case study in the Assured Autonomy program funded by DARPA.

Figure 1 illustrates a typical mission of follow the pipe while avoiding an
obstacle. The mission specification is as follows: If no obstacles ahead are present,
the AUV should follow the pipeline at a constant distance that allows it to obtain
the best resolution of the sonar image. When an obstacle is encountered, the
AUV needs to maintain a specified separation from the obstacle without losing
the pipeline. The AUV is equipped with a front-looking sonar to detect obstacles
and a side-looking synthetic-aperture sonar to track the pipeline. In order to
perform the mission autonomously, the AUV is also equipped with three learning-



enabled components. First, an obstacle detector discovers obstacles in the front
sonar image and calculates the distance to the nearest obstacle, as well as its
size. Second, a perception component detects the pipeline in the side sonar image
and calculates the distance to the pipeline and the vehicle’s heading relative to
the pipeline. Finally, a neural-network controller takes in the relative heading,
the distance to the pipeline, and the obstacle information, and calculates control
commands for the actuators on the vehicle.

We assume a scenario where design-time assurance for such a mission is
provided by formal closed-loop verification. In our case study, we modeled the
AUV and its environment as a hybrid system and used the tool Verisig [7] to
perform reachability analysis of the system model and verify that the mission
requirements are satisfied. Such analysis is subject to a number of assumptions.
In particular, we had to assume that the physical dynamics of the AUV have
been accurately captured by the model; that is, the response of the vehicle to an
actuation command is within a certain error bound of the model’s prediction.
Further, the perception component, itself implemented using a neural network,
was too complex to be included in the model for verification. Instead, we assumed
that it always provides an accurate readings — also up to an error bound — of
the AUV’s distance and heading relative to the pipeline. These assumptions are
likely to be violated at run time.

Fig. 1. Requirements for underwater pipeline inspection with an AUV.

2 Problem statement and challenges

We aim to address the following problem: given run-time observations of the
system’s operation, determine the level of confidence that the guarantees of
satisfaction of the safety requirements, established at design time, still hold. A
low confidence in these guarantees does not necessarily mean that a violation of
safety requirements is imminent. However, a probabilistic interpretation of this
confidence would serve as a lower bound on the probability that the mission is



safe. To make this confidence useful, however, we should make the gap between
our estimate and the probability of being safe as small as possible.

Revisiting our AUV example, we intend to monitor the operation of learning-
enabled components that process the readings from the forward and side sonars
and compute control commands, as well as how the vehicle responds to the
control commands. From these observations, we intend to compute an estimate
of the probability that the design-time verification results apply; namely, that
the AUV will neither lose the pipeline nor collide with an obstacle.

Verification results may become invalid if the verification models were inac-
curate or if assumptions used in constructing these models are violated at run
time. In the case of the AUV, some possible causes of invalid guarantees are
that (1) the sonars are less reliable that we expected (e.g., because the water
has more dust particles, which degrade sonar images) and (2) the vehicle re-
sponds to control commands differently that expected (e.g., because there is a
strong current). In either of those cases, the AUV may collide with an obstacle
despite the safety proven by design-time verification. Thus, our goal is to esti-
mate our confidence that neither of these two causes (nor other possible ones)
are currently applicable.

This estimation faces two major challenges. First, as mentioned above, a vi-
olation of assumptions does not necessarily imply a safety violation. In order for
the confidence estimate to be useful, the connection should be as tight as possi-
ble, excluding assumption violations that currently do not affect safety. Second,
both safety requirements and assumptions typically refer to the actual relation-
ship between the system and its environment (e.g., the actual distance from the
obstacle). But at run time, we can assess this relationship only indirectly, through
the sensing and perception of the vehicle. Quantifying uncertainties in sensors
and perception components is therefore critical to the accuracy of our confidence
estimate, and more than one component may be involved in this assessment.

Our focus on violations of design-time assumptions allows us to break the
problem into two sub-problems and address the challenges in a systematic way.

1. The first sub-problem is to determine how assumption violations influence
requirement violations and elicit a logical relationship that takes only rele-
vant assumptions into account.

2. The second sub-problem is to calculate a confidence measure for each as-
sumption, reflecting the probability that the assumption holds, and to com-
pose these confidence measures into an overall assurance measure for the
current mission, according to the logical relationship in the first sub-problem.

Addressing these two sub-problems in a coordinated fashion forms the core of
our approach, which we discuss in the next section.

3 Outline of the approach

We consider formal verification as a design-time assurance technique. Verification
— in our example, closed-loop reachability analysis — is typically performed on



a model of the system and its environment, constructed in a modular fashion.
Each module represents either a particular component in the system or a part
of the system environment. Unavoidably, models rely on assumptions about the
system behavior, which stem either from insufficient knowledge about the actual
system or its operating environment, or from simplifications needed to scale
up the verification. If these assumptions are violated, the verification results
may not hold for the actual system. In our experience, modeling assumptions
reflect the modularity of the verification model: each assumption concerns the
operation of a component in the system, or some interaction of a component
with other components or the system environment. This observation allows us
to monitor for assumption violations by focusing on individual components or
specific interactions.

As discussed at the end of Section 2, we decompose the problem of comput-
ing the confidence estimate into two sub-problems. One is a problem of estab-
lishing a relationship between assumption violations and violations of system
requirements. We elicit this relationship using the assumption effect analysis,
establishing a logical structure for composing confidence monitors of individual
assumptions into a system-wide assurance monitor. The other is a problem of
developing confidence monitors for the assumptions based on observed behav-
iors of system components. Produced by our probabilistic analysis, each of the
assumption monitors outputs a logical verdict v (i.e., whether the assumption
is satisfied), as well as a level of confidence c in the verdict. Both of these sub-
problems are addressed at design time. At run time, assumption monitors are
deployed alongside the components they monitor. Confidence outputs of the as-
sumption monitors are fed into the assurance monitor, which outputs the overall
confidence measure. Figure 2 illustrates our overall approach.

Fig. 2. Overview of the confidence composition approach.



3.1 Logical structure of the assurance monitor

The first step in designing an assurance monitor is to establish a relationship
between design-time modeling assumptions and verification guarantees. We cap-
ture this relationship as a logical formula over Boolean variables that represent
the satisfaction of each assumption. Naively, we can always represent this rela-
tionship as a conjunction over all assumptions. That is, verification guarantees
hold only if all assumptions are satisfied. This formula would often be too con-
servative, resulting is a much lower confidence than necessary. Some assumptions
may be relevant only to certain safety properties and in certain modes of op-
eration; hence, by making this relation explicit in the formula, we can build a
more accurate assurance monitor and thus tightening the lower bound on the
probability of mission success.

Assumption effect analysis. In order to identify assumptions and analyze the
effects of their violations on safety guarantees, we follow a process similar to tra-
ditional hazard analysis [11, 5]. Hazard analysis is an important step in the design
of safety-critical system that identifies potential failures in system components
and reasons about their effect on system safety and mitigations against these
failures. Similarly, our assumption effect analysis determines which component
models and which assumptions need to be monitored — and how. To perform
this analysis, we consider each assumption in turn and analyze the effect of its
violation on the system behavior. Ultimately, we identify the logical condition
under which violation of the assumption can lead to the safety violation.

Example: assumption effect analysis for AUV missions. Consider a subset of
assumptions that are made during the verification of the AUV model:

A1 The current true state is the set of initial states for which verification passed
A2 Vehicle behavior is consistent with the dynamics model used in verification
A3 Obstacle detector has bounded error on the obstacle distance
A4 Perception module has bounded errors on the range/heading to the pipeline
A5 No false-negative obstacle detections
A6 No false-positive obstacle detections

Assumptions A1, A2, and A4 always need to be satisfied. However, if an
obstacle is currently detected, assumption A5 is irrelevant. This is because A5
deals with false negative detections of obstacles, but we would currently have
a positive detection. Conversely, if an obstacle is not detected, assumption A6
would be irrelevant; furthermore, assumption A3 would also be irrelevant, be-
cause the distance to the obstacle is not used in computing the control command.
As a result of this analysis, we obtain the following logical specification for the
assurance monitor in terms of assumption monitors:

(¬obstDet ∧ S1) ∨ (obstDet ∧ S2),

where obstDet is a Boolean flag indicating that the obstacle is detected, S1 =
A1 ∧A2 ∧A4 ∧A6 is the set of assumptions relevant in the absence of detected
obstacles, and S2 = A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 is the set of assumptions relevant
in the presence of detected obstacles.



3.2 Assumption monitors

Most of the assumptions we encounter in practice are either associated with a
particular system component or can be trivially decomposed into component-
based sub-assumptions. For example, assumption A1, which concerns the phys-
ical state of the vehicle, naturally decomposes into an assumption A1o, which
constrains the true distance from an obstacle and its size and is associated with
the forward sonar and the obstacle detector — and an assumption A1p, which
constrains the true distance from the pipeline and its heading and is associated
with the side sonar and the pipeline detector. Such sub-assumptions are often
stochastically independent, allowing us to monitor assumptions associated with
each component independently of other components and compose the outcomes
based on the logical structure elicited above. A single component may be asso-
ciated with multiple assumptions. For example, assumptions A1o, A3, A5, and
A6 are all associated with the same component — the obstacle detector.

Many assumptions can be specified as assertions over the true values of phys-
ical variables (e.g., the distance to an obstacle) and the observable values pro-
duced by a component. For example, if DT is the true distance from an obstacle,
DO is the observed distance from the obstacle, and obstDet is the flag denoting
an obstacle detection, then assumption A3 is |DT − DO| ≤ ε and assumption
A6 is obstDet =⇒ DT < δ, for some positive constants ε and δ. Since DT is
not observable directly, these assumptions can be ascertained only in a proba-
bilistic fashion, with a measure of confidence representing the probability that
the assumption is indeed satisfied.

The assumptions associated with one component need to be monitored to-
gether, because they are almost always correlated. For example, if the obstacle
detector encounters a blurry sonar image, due to murky water or sensor noise, the
detector may suffer a false positive or false negative, and the distance projection
it produces is likely to be meaningless as well. To account for such dependen-
cies, we create a probabilistic confidence model for each component, the nature
of which depends on the circumstances. Generally, a broad range of state esti-
mators, such as Kalman and particle filters, and probabilistic models, such as
Bayesian nets, can be used for this purpose. In some cases, a component may
already have a monitor that produces a confidence estimate in its correct oper-
ation. For example, neural network classifiers often produce a confidence in the
classification outcome. In this case, our probabilistic confidence model would re-
late this value to confidence estimates of related assumptions. In other cases, e.g.,
to check whether a dynamics model is valid, we may need to apply a statistical
detection method that would yield a distribution over the unknown variables.

For our AUV case study, we concentrated on the assumptions about vehicle
dynamics and perception components. For the vehicle dynamics, we plan to use
a lightweight technique for model invalidation [3], which applies classification-
based techniques to conclude that observed responses of the vehicle to a sequence
of actuator commands do not comply with a dynamics model. The technique
provides us with a level of confidence, which, if properly calibrated, corresponds
to a probability that the assumed model is not valid. For monitoring percep-



tion, we will apply our recent work on confidence calibration for neural network
classifiers [8], which would allow us to derive confidence in perception outputs.

In general, we would require a taxonomy of approaches to produce calibrated
confidence for different kinds of assumptions by monitoring a variety of system
components. For now, it remains a part of our future work.

3.3 Composition of assumption monitors

As discussed in Section 3.1, the outcome of the assumption effect analysis is a
logical formula that describes the composition of assumption monitors to obtain
the assurance monitor for the whole system. However, we are composing monitors
that produce not just a Boolean-valued verdict, but also a value that describes
the confidence in the verdict. The challenge is to perform this composition in
a way that the resulting assurance monitor provides a confidence value in the
formula turning into “true”. In particular, since the assumptions in sub-formulas
f1 and f2 are neither independent nor mutually exclusive, the composition is
not as simple as replacing P (f1 ∧ f2) with P (f1) · P (f2) and P (f1 ∨ f2) with
P (f1) + P (f2). Instead, the composition should be based on the dependencies
between the monitors.

To address this challenge, we plan to extend our recent work on logical com-
position of stochastic detectors [13], which are run-time monitors that deliver
Boolean verdicts with probabilistic guarantees in terms of false positive and false
negative rates. This framework allows us to develop composite detectors that are
based on formulas of a temporal logic — and derive probabilistic estimates of
their performance. Since assurance monitors also perform logic-based composi-
tion, we expect them to be realizable in our framework. In addition, we intend
to represent the framework with fitting representations of dependencies between
monitors, such as covariances/correlations, conditional probabilities, odds ratios,
and copula functions. These representations can be learned at design time from
training data and simulations or possibly estimated at run time.

4 Summary and discussion

We have proposed a technique to dynamically estimate our confidence in the
operation of an autonomous system by leveraging design-time safety guaran-
tees. Our first step is to identify the assumptions underlying these guarantees
and develop run-time monitors of probabilistic confidence in these assumptions.
We then consider ways in which violations of these assumptions can lead to
safety violations and use this relationship to compose assumption monitors into
a system-wide assurance monitor.

We are currently in the process of implementing this vision in case studies
of autonomous systems. These case studies will help us better understand the
kinds of assumptions that can be effectively monitored and improve confidence
composition techniques, as well as evaluate the utility of the proposed vision.

Open questions. There are several aspects of dynamic assurance that the de-
scribed approach does not yet handle.



Confidence-based adaptation. For autonomous systems it is not enough to detect
that the confidence in the mission progress is unacceptably low. Ideally, the
system needs to react to the potential problem in a way that would restore the
confidence or potentially abort the mission in order to save the vehicle from
being lost. Several approaches loosely based on Simplex architecture [14] have
been proposed [4]. The difference in our case is that reactions are triggered not
by fault detection but by a drop in confidence. Such a reaction requires that we
not only detect the problem, but also identify its causes. Here, this identification
may be supported by the multi-level compositional structure of the assurance
monitor. Extending our framework to support confidence-driven adaptation is
another important research direction.

Predictive confidence. The meaning of confidence introduced above relies on the
satisfaction of design-time assumptions up to the current moment. However, if
the assumptions are confidently satisfied now, we should intuitively be confident
in safety in the immediate future. So far we have not explored the relationship
between the level of confidence and the time horizon for safety. It also will be
an important avenue of our future work.

Making an explicit connection to a time horizon for safety may also allow us
to reduce conservatism in our confidence estimate. As discussed in the first two
sections, a violation of design-time assumption does not necessarily mean that
a safety violation is imminent. Thus, the confidence in the satisfaction of the
assumptions is expected to be lower than the confidence in system safety. This
lower bound may turn out to be quite conservative and cause false alarms. One
possible way to achieve a tighter connection between assumptions and safety con-
fidence is to incorporate predictive monitors [1, 12] in our confidence calculation.

Confidence vs. robustness. We may be able to establish a connection between
our notion of confidence and robustness of safety satisfaction. The idea is that, if
the system operates near the boundary of the safety region, a small perturbation
can make it unsafe. And since we cannot reliably observe small perturbations,
our confidence cannot be too high in this situation. Therefore, a high confidence
may probabilistically guarantee some minimal distance from the boundary. This
is a promising yet challenging direction of research because formally, confidence
and robustness are related through complex verification and monitoring models.
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