
3288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Compositional Probabilistic Analysis of Temporal
Properties Over Stochastic Detectors

Ivan Ruchkin, Member, IEEE, Oleg Sokolsky, Member, IEEE, James Weimer, Member, IEEE,
Tushar Hedaoo, and Insup Lee, Fellow, IEEE

Abstract—Runtime monitoring is a vital part of safety-critical
systems. However, early stage assurance of monitoring quality is
currently limited: it relies either on complex models that might
be inaccurate in unknown ways or on data that would only
be available once the system has been built. To address this
issue, we propose a compositional framework for modeling and
analysis of noisy monitoring systems. Our novel 3-value detector
model uses probability spaces to represent atomic (noncompos-
ite) detectors, and it composes them into a temporal logic-based
monitor. The error rates of these monitors are estimated by our
analysis engine, which combines symbolic probability algebra,
independence inference, and estimation from labeled detection
data. Our evaluation on an autonomous underwater vehicle found
that our framework produces accurate estimates of error rates
while using only detector traces, without any monitor traces.
Furthermore, when data are scarce, our approach shows higher
accuracy than noncompositional data-driven estimates from mon-
itor traces. Thus, this article enables accurate evaluation of logical
monitors in early design stages before deploying them.

Index Terms—Cyber–physical systems (CPSs), detection algo-
rithms, formal languages, parameter estimation, probabilistic
logic.

I. INTRODUCTION

MANY cyber-physical systems (CPS) operate in chal-
lenging safety-critical contexts, such as roadways,

urban airspaces, and coastal waters. Not only is the control
of the CPS expected to be safe but also safety monitoring
is necessary to trigger fail-safes and notify human operators.
This monitoring typically detects whether the CPS has experi-
enced a fault/failure or finds itself in an environment where it
may be unsafe. Such environments include plants with hard-
ware malfunctions, severe weather conditions, and unmapped
physical locations.

In the last decade, the runtime verification research has
developed formal techniques and tools to increase confidence
in the system’s safety [1], [2]. Logically and temporally related

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported in part by the Air Force Research
Laboratory and the Defense Advanced Research Projects Agency as part of
the Assured Autonomy Program under Contract FA8750-18-C-0090; and in
part by the Office of Naval Research under Contract N68335-19-C-0200. This
article was presented in part at the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Ivan Ruchkin.)

The authors are with the Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
iruchkin@cis.upenn.edu).

Digital Object Identifier 10.1109/TCAD.2020.3012643

events can be monitored based on specifications in linear tem-
poral logic (LTL) [3] and its descendants. When observations
violate these specifications, the conditions are possibly unsafe
and the system should execute a fail-safe fallback maneuver
(e.g., stopping or landing).

Runtime safety monitors rely on inputs from noisy and
potentially unreliable perception mechanisms. For example,
the algorithms processing visual sensor data may randomly fail
to detect features, or instead report nonexistent artifacts [4].
Furthermore, some perception systems are based on statisti-
cal tests, which at times may not have sufficient data for a
conclusive answer. Such detectors feed stochastic errors into
monitors, which become difficult to analyze only using non-
deterministic logical constructs: they do not distinguish the
more and less likely scenarios. Thus, we require probabilistic
guarantees for logical monitors. These guarantees often take
the form of false-positive and false-negative rates.

Unfortunately, the existing work falls short of provid-
ing such guarantees given perception uncertainties, especially
in early design stages when data are scarce. One way to
address this problem is model driven: probability constructs
are embedded into a logical property (e.g., in probabilistic
computation tree logic (PCTL) [5]), and the property is model
checked on a probabilistic dynamics model. This method
requires a detailed closed-loop model of the whole system—
not only of the perception mechanism but also of the controller
and the environment. Such models are rarely available in prac-
tice, and even when available they tend to be inaccurate, hard
to validate, and lack scalability.

Another path to probabilistic monitoring guarantees is
directly through the testing/execution data: safety monitors
are treated as black-box binary random variables, thus turning
the problem into the observation of the Bernoulli trials and
estimating their error probabilities using standard statistical
techniques [6]. In this case, the binary variable representation
unnecessarily abstracts away our knowledge about the per-
ception uncertainties and the logical structure of the monitor.
This method requires substantial and specific data that may
be difficult to collect; e.g., the system needs to be repeatedly
put in an unsafe state to calculate the false-negative rate of
a safety monitor. Usually, such data are unavailable in early
design stages.

In this article, we present an approach to estimating the
error rates of logic-based runtime monitors. We combine the
strengths of model-based and data-driven approaches by taking
advantage of logical specifications and using only perception

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3289

Fig. 1. Our modeling and analysis framework.

(nonmonitor) data—without any closed-loop system models.
Thus, we can evaluate monitors before they are built.

Shown in Fig. 1, our approach consists of two parts:
1) modeling and 2) analysis. Inspired by statistical hypothe-
sis tests [7], the modeling part focuses on binary ground-truth
conditions (e.g., whether a vehicle faces an obstacle), which
are true or false at each time. At the heart of our model are
stochastic detectors of those ground truths with three out-
comes: 1) true; 2) false; and 3) unknown. Logical monitors
are modeled by composing, these detectors using LTL opera-
tors; the composed detection outcomes are determined by the
3-value1 LTL [9], whereas the ground truths are composed by
classic binary LTL.

The analysis part, performed offline by a heuristic compu-
tational assistant, treats a monitor’s error rate as a probability
in an outcome space composed from the detector spaces, in
accordance with the monitor’s logical definition. This prob-
ability is represented by a symbolic formula that can be
decomposed into smaller probabilities of events associated
with individual detectors. These probabilities (shown at the
bottom of Fig. 1) are easier to estimate because they require
only labeled data from the detectors, but not monitors.

We evaluated our approach on a simulated underwater vehi-
cle that detects and follows an underwater pipeline. One safety
property we monitor is that after losing sight of the pipeline,
the vehicle rediscovers it within a given period of time; other-
wise, the vehicle declares that it is lost, surfaces, and needs to
be evacuated by a ship crew. We implemented a monitor for
this property and applied our approach to estimate its false-
negative rate (along with the false-positive rate of a different
monitor, which checks whether the vehicle reliably follows the
pipeline). This evaluation showed that our approach provides
estimates on par with purely data-driven estimation, exceeds
them when little data are available, reuses labeled detector data
due to its compositional nature, and executes within seconds.
However, the approach is dependent on accurate independence
assumptions between detectors.

This article makes three contributions.
1) A probabilistic model of 3-outcome detectors

(Section IV) based on a logic for these detectors
(Section III).

2) An analysis of error rates based on probabilistic calcu-
lations and using labeled detection data (Section V).

1We do not mean the 3-value inconclusiveness due to incomplete traces [8].

3) An application of the above model and analysis to two
monitors in a simulated underwater vehicle (Section VI).

This article is accompanied by a supplement [10] with addi-
tional derivations and illustrations. The source code and data
can be found at https://github.com/bisc/prob-comp-asst.

The next section introduces a running example.

II. MOTIVATING EXAMPLE

The DARPA assured autonomy program considers an
unmanned underwater vehicle (UUV) that follows a contin-
uous underwater pipeline and scans it for defects. To discover
and track the pipeline, the vehicle uses two side-looking sonars
pointing to the sides and downward from the vehicle. Thus,
going above the pipeline in parallel to it provides the neces-
sary data. The quality of the pipeline is investigated manually
offline, after the UUV mission is complete, by processing
the collected scan data via synthetic aperture imaging. The
UUV is also equipped with a forward-facing sonar for obstacle
avoidance.

The UUV software is comprised of a perception subsystem,
a controller, and a safety monitor. The perception subsystem
continuously processes the sensor data from both side-scan
sonars. Since the data are noisy, the pipeline detector (repre-
sented as a predicate Pl here) produces a potentially inaccurate
3-valued output at each moment.

1) Confident that the pipeline is visible (value T).
2) Confident that the pipeline is not visible (value F).
3) Not confident in either outcome (value U).
This output of Pl is fed into the controller and the safety

monitor. The former actuates the propeller and fins to fol-
low the pipeline as well as possible. The goal of the latter
is to determine when the UUV has definitively lost track
of the pipeline and needs to be evacuated. The monitor is
required to raise an alarm when the pipeline is not visible
(i.e., F) for d ∈ [5, 30] s. To define this monitor in clas-
sic LTL, we map T to the Boolean truth value, and both F
and U to the falsehood value. Thus, we write the following
LTL formula, from which a monitor2 can be automatically
generated [2]:

¬Pl → �[1,d]Pl. (1)

Our goal is to determine two probabilistic properties of the
above monitor at design time: 1) the false-positive rate (FPR:
“detected but not present”) and 2) the false-negative rate (FNR:
“not detected but present”). High FPR is undesirable because
it takes the effort of an entire vessel to evacuate the UUV.
High FNR is a safety issue because if the UUV is lost for
longer than d seconds, it may find itself in an area where the
surfacing may be unsafe due to potential collisions (e.g., near
a busy port). The next section describes our logical model for
monitors.

III. THREE-VALUE TEMPORAL LOGIC FOR DETECTORS

Our model of monitors has two aspects: 1) logical
and 2) stochastic. The logical aspect (this section)

2A monitor raises an alarm when the formula it monitors evaluates to F.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

3290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

specifies monitors as logical formulas over detector outputs.
The stochastic aspect (next section) represents these monitors
as probabilistic compositions of detectors. Both aspects focus
on the outputs of detectors, abstracting away heterogeneous
details of the exact functionality of the detectors.

A detector D is—abstractly for now—a random process that
at each moment tries to determine the presence or absence of
some hypothesis H1. We model the output of D at a certain
moment as a pair of random variables (DO, GT).

1) Detection outcome DO ∈ {T, F, U} is the 3-value output
of the detector: T (confident in H1), F (confident in the
absence of H1, i.e., the presence of null hypothesis H0),
and U (not confident in either H1 or H0).

2) Ground truth GT ∈ {T, F} is the actual presence of H1,
which can either be true (T) or false (F).

Sampled at consecutive times, a detector produces a pair of
finite equal-length sequences (sdo, sgt), where sdo is a sequence
(or, trace) of DO values and sgt is a sequence of GT values.
For example, Pl is a detector for H1: “pipeline present.” For
it, sgt(t) is whether the pipeline is indeed present at time t,
and sdo(t) is the 3-value detection output.

Monitors are specified in LTL3d, a 3-value LTL for detectors
with bounded temporal modalities. This logic is our modi-
fication of the 3-value LTL with unbounded modalities [9],
which, in turn, builds on Kleene’s strong logic of indetermi-
nacy K3 [11]. LTL3d adds bounds on modalities and two extra
negations to handle uncertain values. LTL3d considers fully
known traces: the value U is orthogonal to the inconclusiveness
from not knowing a complete trace [8].

Formulas in LTL3d are constructed from atomic detectors
D1 . . . Dk, the truth constant T, three operators of negation
(¬s, ¬w, ¬se), conjunction ∧, and bounded until U[m,n] (where
m, n ∈ N0 and m < n for the rest of this section)

ϕ ::= ϕ U[m,n] ϕ | ϕ ∧ ϕ | ¬sϕ | ¬wϕ | ¬seϕ | D | T

where D ∈ {D1 . . . Dk}. These operators conventionally define
other syntax: disjunction ∨, three implications →s, →w,
and →se, and modalities eventually � and always �; their
definitions are available in the supplement [10].

Any LTL3d formula ϕ can be evaluated in two ways. The first
evaluation is over the values of DO, calculating the 3-value
detection results. The second evaluation is over the values
of GT , characterizing the binary ground-truth “oracle” (and
coinciding with the standard LTL semantics). Both evalua-
tions happen on a finite state trace s = s1s2 . . . sL, where
L ∈ N is the trace length. We assume we always have a trace
of sufficient length to evaluate a given formula: L ≥ n. A
tail of trace s by starting from position t < L is denoted as
s(t..) = stst+1st+2 . . . sL.

We formulate the 3-value evaluation first, denoted [[[ϕ]]]s.
Here, the state trace s is a collection of the DO traces s1

do . . . sk
do

of the respective detectors

[[[T]]]s = T

[[[Dj]]]s = sj
do(1), where j ∈ [1, k]

[[[¬sϕ]]]s =
⎧
⎨

⎩

T if [[[ϕ]]]s = F
F if [[[ϕ]]]s = T
U if [[[ϕ]]]s = U

[[[¬wϕ]]]s =
⎧
⎨

⎩

T if [[[ϕ]]]s = F or [[[ϕ]]]s = U
F if [[[ϕ]]]s = T
U never

[[[¬seϕ]]]s =
⎧
⎨

⎩

T if [[[ϕ]]]s = F
F if [[[ϕ]]]s = T or [[[ϕ]]]s = U
U never

[[[ϕ1 ∧ ϕ2]]]s =
⎧
⎨

⎩

T if [[[ϕ1]]]s = T and [[[ϕ2]]]s = T
F if [[[ϕ1]]]s = F or [[[ϕ2]]]s = F
U otherwise

[[[ϕ1 U[m,n] ϕ2]]]s =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T if ∃i ∈ [m, n] · [[[ϕ2]]]s(i..) = T
and ∀j ∈ [m, i) · [[[ϕ1]]]s(j..) = T

F if either ∀i ∈ [m, n] · [[[ϕ2]]]s(i..) = F
or ∃i ∈ [m, n] · [[[ϕ1]]]s(i..) = F and
∀j ∈ [m, i) · [[[ϕ2]]]s(j..) = F

U otherwise.

Definition 1 (3-Value Satisfaction): Formula ϕ is 3-value
satisfied on state trace s, denoted s |=3 ϕ, if [[[ϕ]]]s = T.

A few remarks are in order. Similarly to K3, we interpret U
as a value of insufficient information, leading to the semantics
that take advantage of the known information, e.g., U∧F ≡ F.
We adopt this principle because CPS often need to make
decisions with limited information rather than waiting for
the complete picture to be known. Similarly to the 3-value
LTL [9], our Until operator handles uncertainty in the values
of its operands—not in whether the available trace values are
sufficient to evaluate the Until.

Unlike the existing 3-value logics, our LTL3d has several
negations. Operator ¬s is equivalent to the negation in K3: it
flips the certain outcomes (T, F) while preserving the uncertain
value. The two other negations, weak ¬w and strong exclusive
¬se, are never uncertain, with ¬w erring on the side of H1 and
¬se erring on the side of H0.

The 2-value evaluation ([[ϕ]]s) is based on the sgt traces
s1

gt . . . sk
gt of the respective detectors. The semantics are the

same as for [[[ϕ]]]s except not using the U values: atomic detec-
tors can only evaluate to T or F because here the state trace
s is based on the ground-truth traces

[[Dj]]s = sj
gt(1), where j ∈ [1, k].

Definition 2 (2-Value Satisfaction): Formula ϕ is 2-value
satisfied on state trace s, denoted s |=2 ϕ, if [[ϕ]]s = T.

Remark 1: We use bold operators (e.g., ∧, ¬s, and U)
where both 3-value and 2-value interpretations are possi-
ble; nonbold operators (e.g., ∧, ¬) have the usual 2-value
interpretation.

Relations |=3 and |=2 are used to define a monitor’s output
and ground truth, respectively.

Definition 3 (Monitor): A monitor M, defined by formula
ϕ in LTL3d over detectors D1 . . . Dk, is a function that maps
the detector traces (s1

do, s1
gt) . . . (sk

do, sk
gt) to a pair of monitor

traces (mdo, mgt)

mdo(t) = s1
gt(t..) . . . sk

gt(t..) |=3 ϕ

mgt(t) = s1
gt(t..) . . . sk

gt(t..) |=2 ϕ.

Notice that detectors produce a 3-value sdo and a 2-value sgt,
whereas monitors produce two 2-value traces: mdo and mgt. In

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3291

all cases, we interpret the value T an “alarm,” and F and U
as “no alarm.”

To sum up, the ground-truth values are substituted into logi-
cal formulas in the 2-value case, and the detector output values
are substituted in the 3-value case.

With the logical aspect defined, we rewrite the motivating
property (1) in LTL3d. We use ¬w to be conservative: the
unknown presence of pipeline (U) is interpreted as its loss

ϕpr := ¬wPl →w �[1,d]Pl. (2)

We define a pipe recovery monitor Mpr to alarm only when
certain about violations of ϕpr. Thus, we use ¬s to indicate
this requirement of certainty

Mpr = ¬sϕpr = ¬s(¬wPl →w �[1,d]Pl). (3)

We implemented Mpr over the sdo trace of detector Pl, and
it raises an alarm when T occurs in its mdo. The GT trace mgt

is calculated from sgt of Pl. Monitor code generation relies on
the standard approaches [2] and is out of this article’s scope.

A monitoring error occurs if, for some t, mdo(t)
= mgt(t).
We are interested in two types of errors: if mdo(t) = T and
mgt(t) = F, it is a false positive; if mdo(t) = F and mgt(t) = T,
it is a false negative. Since detectors and monitors are random
variables, we talk about probabilities, or rates, of either type
of errors.

Having monitors with high error rates can be a safety-
critical concern, as illustrated on Mpr in Section II. Typically,
these rates are evaluated by collecting, labeling, and analyzing
their output data. The data are collected over multiple execu-
tions, each providing one mdo, labeling which yields one mgt.
Then, the error rate estimate is the count of errors (e.g., false
positives) divided by the count of cases where this type of error
(e.g., a false positive) was possible (e.g., all true negatives).

We believe that this estimation can be done in early design
stages and using only the data from the atomic detectors (with-
out executing the monitors). The central problem of this article
is, hence, to estimate the error rates of a monitor of a LTL3d

formula. This estimation relies on labeled traces of atomic
detectors (paired sdo and sgt).

IV. PROBABILISTIC COMPOSITION OF DETECTORS

This section models detectors as probability spaces behind
the random variables (DO, GT), described in the previous
section. Then, we show how compositions of these spaces
correspond to formulas in LTL3d, in order to analyze these
formulas probabilistically in Section V.

A. Stochastic Detectors

We start by defining a probability space of one detector.
Definition 4 (Atomic Stochastic Detector): An atomic

stochastic detector (D) is a pair of random variables (DO,
GT) over a probability space (�,F , Pr).

1) � is an elementary outcome space, defined as the
set of all six possible pairs of values for (DO, GT):
(T, T), (T, F), (F, T), (F, F), (U, T), (U, F).

2) F = 2� is a sigma-algebra of events over signature �,
defined as the powerset of � (including the empty set).

We use the following marginal events as shortcuts for
the individual values of either random variable3:

gtt(D) = (∗, T) = {(T, T), (F, T), (U, T)}
dot(D) = (T, ∗) = {(T, T), (T, F)}
gtf(D) = (∗, F) = {(T, F), (F, F), (U, F)}
dof(D) = (F, ∗) = {(F, T), (F, F)}
dou(D) = (U, ∗) = {(U, T), (U, F)}.

3) Pr is a single-detector discrete probability measure over
F , subject to the usual Kolmogorov axioms.

Our concept of a stochastic detector encompasses a wide
range of algorithms with ternary outcomes over time series,
including anomaly detectors, machine learning classifiers, and
sensor fusion algorithms. We have conveniently abstracted
away the inputs of these algorithms, making this model
broadly applicable. As mentioned in Section III, our conven-
tion is that a detector raises an alarm iff event dot occurs, thus
introducing the asymmetry inherent in statistical tests (which
reject H0 only with sufficient evidence).

Now, we handle time and multiple detectors. When detec-
tor D produces readings over time points t1 . . . tk (e.g., a UUV
gets consecutive readings of the pipeline), we model it with
a sample of k “instances” of the original detector: D1 . . . Dk,
i.e., a stochastic process. These copies have their own respec-
tive variables DO1 . . . DOk and GT1 . . . GTk. These instances
are not necessarily independent identically distributed; in gen-
eral, their individual probability spaces are coupled to form
a larger, multidetector probability space, which we use to
describe compositions.

Definition 5 (Multidetector Probability Space): For detec-
tors D1 . . . Dk, a multidetector probability space (�,F , Pr) is
defined as follows.

1) � = �1 ×· · ·×�k is a k-dimensional space of elemen-
tary outcomes; each dimension produces an elementary
outcome pair for the respective detector.

2) F = 2� is an event sigma-algebra, which is a powerset
of the outcome space � (including the empty set). Thus,
an event is a set of k-sized vectors.

3) Pr is a global probability measure over F , extended
from Pr1 . . . Prk in a manner consistent with them (this
requirement is formalized in the supplement [10]).

For a given set of atomic detectors, there are infinite multi-
detector spaces because individual probabilities Pr1 . . . Prk can
be coupled in many ways to form the joint Pr. Analysis of
possible couplings is one of the tasks we handle in Section V.

Now, consider k different4 detectors for n time points, lead-
ing to a k × n multidetector space. Although we can handle
the general joint distribution from Definition 5, for tractabil-
ity it is common to impose domain-specific constraints on Pr.
A common type of them is independence constraints, denoted
A ⊥⊥ B for random variables A and B; a set of independence
constraints is denoted I. Detectors of a random walk would
have independent sequential actions: Ai ⊥⊥ Ai+1. This means

3By definition, events dof, dot, and dou partition �. The same applies to
gtt and gtf. Any such partitioning events constitute a well-formed detector.

4The detectors may be of the same phenomena or different ones. We address
the general case where all ground truths are different.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

3292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

that any combination of marginal events produced by these
variables is independent (as expanded in the supplement [10]).

One of the common measurement models is that the error is
stateless between measurements, meaning that previous mea-
surements do not provide any extra information5 given the
current ground truths. In our terms, this implies the inde-
pendence of any sequence of outcomes given their respective
ground truths—an assumption we will use in Section V

∀i, j : N, 1 ≤ i < j ≤ k ·
DOi ⊥⊥ DOi+1 ⊥⊥ . . . ⊥⊥ DOj | GTi . . . GTj. (4)

Remark 2: For convenience, we will perform symbolic cal-
culations over marginal events introduced in Definition 4.
These events can be connected with operators from classic
binary logic: ¬, ∧, and ∨. We use nonbold fonts for them to
interpret as usual (e.g., ∧ means that both events occurred).
These operators correspond to set operations over events in
F : complement, intersection, and union, respectively.

The above probabilistic model expresses any error rate,
denoted er, straightforwardly as a conditional probability over
marginal events. This article focuses on two specific error
rates.

1) False-Positive Rate: fpr(D) = Pr(dot(D)| gtf(D)).

2) False-Negative Rate: fnr(D) = Pr(¬ dot(D)| gtt(D)).

Our model allows error rates to change between detectors
D1 . . . Dn. However, in this article, we assume the error rates to
be constant across time moments because here they represent
the inherent qualities of detectors. Mathematically, this means
that our model averages out temporal variation in an error rate.

B. Composition of Stochastic Detectors

Now, we will show how to interpret formulas in LTL3d as
compositions of detector spaces. Intuitively, a composite detec-
tor defined by a formula is a result of applying this formula’s
evaluation to the atomic detectors. The composite outputs are
distributed over a multidetector probability space.

Definition 6 (Composite Detector): A composite detector
D′ for formula ϕ over detectors D1 . . . Dk with state trace s
is a pair of random variables (DO′, GT ′) over a multidetector
probability space for D1 . . . Dk, with these values at time t

DO′(t) = [[[ϕ
(

D1 . . . Dk
)

]]]s(t..)

GT ′(t) = [[ϕ
(

D1 . . . Dk
)

]]s(t..).

Our insight here is that logical formulas correspond to com-
posite detectors in multidetector spaces. For example, ϕpr and
Mpr are composite detectors over Pl, Pl1 . . . Pld defined in a
(d + 1)-dimensional event space, according to (2) and (3).
These spaces can be analyzed probabilistically, yielding esti-
mates of error rates.

Given a fully defined Pr in some multidetector space, a
logical formula determines the probabilities of events of the
corresponding composite detector. In our experience, however,
a fully defined probability measure on a multidetector space

5A slightly stronger assumption, common in time-series analysis [12], is
written DOt = GTt + εt , where εt is a white noise series.

is rarely available or needed: it would require a lot of data
and/or prior knowledge to determine. Instead, this space can be
manipulated symbolically (i.e., without assigning numeric val-
ues) to express the desired probabilities through the known or
easy-to-measure ones (e.g., probabilities of the atomic events),
without committing to a fully defined Pr. These symbolic
manipulations are convenient to carry out in the classic binary
propositional logic, so we calculate using probability formulas
over event predicates.

Let us provide some examples to illustrate event predi-
cates in compositions, say conjunction. Its marginal events are
derived from the logical semantics to be as follows6:

gtt
(

Da ∧ Db
)

= gtt
(
Da) ∧ gtt

(
Db

)

gtf
(

Da ∧ Db
)

= gtf
(
Da) ∨ gtf

(
Db

)

dot
(

Da ∧ Db
)

= dot
(
Da) ∧ dot

(
Db

)

dof
(

Da ∧ Db
)

= dof
(
Da) ∨ dof

(
Db

)

dou
(

Da ∧ Db
)

= dou
(
Da) ∧ dou

(
Db

)
∨

dou
(
Da) ∧ dot

(
Db

)
∨

dou
(

Db
)

∧ dot
(
Da).

Such rewritings for other compositions can be found in the
supplement [10].

Another rewriting to note: in our finite-trace semantics, the
temporal modalities “always” and “eventually” for integers m
and n > m can be expressed with ∧ and ∨ (which, in turn,
can be analyzed based on their marginal events)

�[m,n]D ::= Dm ∧ . . . ∧ Dn

�[m,n]D ::= Dm ∨ . . . ∨ Dn.

In summary, this section showed that an error rate of an
LTL3d formula can be represented as a probability of events
in a multidetector space. We take advantage of this fact to
calculate estimates of error rates in the next section.

V. ANALYSIS OF ERROR RATES

The goal of our analysis is to compute a numeric estimate
of the false-positive or false-negative rate of a monitor, such
as fnr(Mpr), which is treated as a probability in an event space
F over some detectors D1 . . . Dk. This is challenging because,
even though it is precisely defined, a computable formula for
that probability is not known a priori—and there is generally
an infinite number of them. Finding a computable formula is
complicated by knowing probability values for some set of
events and having traces for another set of events.

We factor this problem into three analyses; each takes dif-
ferent inputs and produces a numeric estimate êr of a given
error rate er.

1) Exact Compositional Calculation (ECC): To com-
pute êr, this analysis requires a monitor formula M,

6The form of dou(Da∧Db) follows from events dot(Da∧Db) and dof(Da∧
Db), being a complement of their union. Specifying the marginal events fully
defines a detector, as shown in the supplement [10].

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3293

user-specified probability values Pr of selected events
in F , independence assumptions I, and transformation
rules R

êr(M) = ECCer(M, Pr, I,R).

2) Noisy Compositional Calculation (NCC): This analysis
requires a monitor formula M, labeled traces for atomic
detectors (for simplicity represented by one trace pair:
sgt and sdo), independence assumptions I, a set of sym-
bolic “preferred” probabilities P̂of user-specified events
in F , and transformation rules R (which we elaborate
in the next section). The preferred probabilities is a
set of probability symbols (Pr) over the events of F .
The user chooses P̂ as a heuristic7 for probabilities to
express the error rate through. For example, we use
P̂ = {fpr(Pl), fnr(Pl)} because the composite error rates
can often be compactly expressed using the atomic error
rates. The goal is to find a rate formula with a minimal
number of nonpreferred probabilities and estimate these
probabilities from the labeled detector traces

êr(M) = NCCer

(
M, sgt, sdo, I, P̂,R

)
.

3) Black-Box Calculation (BBC): This analysis uses
only labeled monitor traces, represented with a pair
(mgt, mdo), produced by monitor M whose rate is being
estimated. This analysis does not need the M formula:
it estimates the error rate directly from the traces

êr(M) = BBCer
(
mgt, mdo

)
.

To perform BBC, we use the standard approach using count-
based frequency estimation, exemplified in the second last
paragraph of Section III, which is an optimal estimator for
event probabilities [7]. Generally, to estimate an error rate
ρ = Pr(A|B), BBC is computed as follows:

BBCPr(A|B)(mgt, mdo)

= |{(mgt(t), mdo(t)) s.t. A(t) ∧ B(t)}|
|{(mgt(t), mdo(t)) s.t. B(t)}| . (5)

This article proposes a novel semiautomated heuristic anal-
ysis to compute ECC and NCC. To support the analysis, we
implemented a semiautomated computational assistant based
on the Mathematica’s symbol manipulation (see its source
code at https://github.com/bisc/prob-comp-asst).

A. Transformation Rules

Our computational assistant symbolically transforms formu-
las and computes numeric estimates. The assistant starts with
the formula of the desired error rate (er) of a monitor and trans-
forms it toward a computable formula. Here, “computable”
means that each probability in this formula is either known or
can be estimated from (sgt, sdo).

This assistant manipulates formulas using transformation
rules. Each transformation rule has this form

[G] A → C, where

7The reasons for choosing a specific set P̂ may vary. Some probabilities
have strong priors or more data for accurate estimation; others can limit the
formula search or help find a small formula.

1) A is the antecedent to replace, e.g., it can be Pr(X, Y)

where X and Y are placeholders for any events;
2) C is the consequent to replace the antecedent, e.g., it

can be Pr(X)Pr(Y), where X and Y are from A;
3) G is the guard condition, such as X ⊥⊥ Y.

All transformation rules can be partitioned into four lists,
the combination of which is denoted R. The four lists are as
follows (their rules are fully specified in the supplement [10]).

1) Rlog are logical tautologies of LTL3d, e.g., ¬s¬sD = D.

2) Rev are rules substituting the logical operators of LTL3d

for their definitions in terms of detector events.
3) Rprob are rules to algebraically manipulate probability

expressions. This includes the rules to turn proba-
bilities of event conjunctions into products of event
probabilities, if these events are independent.

4) Rindep are rules to infer conditional independence.
We use the standard semigraphoid axioms: contraction,
decomposition, weak union, and intersection [13].

Each of the four lists can be applied to a formula. The
application of each list proceeds one rule at a time in the order
of the list. A rule is applied to every matching subformula
and until no subformulas match the antecedent and satisfy the
guard. If/once a rule can no longer be applied, the next rule is
read. If no rule is applicable, the list application terminates.

All rule lists use only sound transformations: assuming G
holds, we know that A = C. We ensure that by using only
the standard rules of probability, the Boolean algebra, condi-
tional independence, as well as the easy-to-show tautologies
of LTL3d. Therefore, applying R never produces a formula not
equivalent to the original one, er(M), under the assumptions I.

The outcome of rule application significantly depends on
the rule lists chosen by the user. While we provide large sets
of rules, it is up to the user to pick a subset and order that
would be effective for a given scenario. To do so, the user
needs to understand the rules and their effects on probability
expressions.

The presence and order of rules in R, and particularly
Rprob, determine the completeness, termination, and algorith-
mic efficiency of ECC and NCC. Some rule lists may lack the
necessary transformations (e.g., adding and removing nega-
tions to events) to produce a computable formula. Application
of other rule lists may not terminate; e.g., replacing Pr(X) with
Pr(X ∧ Y) requires a rule that introduces a variable Y , which
could be applied indefinitely. Such rules can lead to a set of
formulas that grows exponentially (to consider all combina-
tions of events) and is possibly unbounded (if normal forms
for event expressions are not enforced).

We expect a large number of formula-finding problems to be
solvable with rule lists. Unfortunately, we do not have a precise
characterization of this class, leaving it for future work. For the
monitors and error rates in this article, we found sufficient and
efficient rule lists, given in full detail in the supplement [10].

B. Steps of ECC and NCC

The ECC and NCC analyses proceed in five steps, illustrated
in Fig. 2. Their abstract description below is exemplified in
Section V-C.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

3294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 2. ECC/NCC analysis steps.

Step 1: Rewrite the formula in terms of marginal events
dot, dof, dou, gtt, and gtf—without any operators of LTL3d.

Inputs:
1) er(M)—the goal error rate er of a monitor M;
2) Rlog—transformation rules for the logic operators;
3) Rev—transformation rules for events of detectors.
Output: f (Pr(F))—a formula f over probabilities of the

Boolean combinations of marginal events of atomic detectors.
Substeps:

1.1 Apply rules Rlog to er(M) to simplify the composite
detector formula. While not required, this substep can
shorten the subsequent steps, e.g., by removing negation
operators when valid (examples in the supplement [10]).

1.2 Apply rules Rev to the result of the previous step.
This substep replaces the 3-value logical constructs
with an equivalent encoding using replacing them with
binary events dot, dof, dou, gtt, and gtf. The expression
becomes more verbose but also manipulable with the
classical Boolean logic.

Step 2: Algebraically reduce the formula to the preferred or
known probabilities.

Inputs:
1) f (Pr(F))—a formula f over probabilities of Boolean

combinations of marginal events of atomic detectors;
2) Rprob—transformation rules for probabilities;
3) (ECC only) Pr(F)—known probabilities of some given

events in F . The rest are unknown;
4) (NCC only): P̂(F)—a set of preferred probabilities.
Output: f (Pr(F))—a formula f over Pr of events in F .
Substeps:

2.1 Apply rules from Rprob, with two caveats.
a) Do not apply rules to known/preferred probabili-

ties.
b) If a rule has an independence guard, send this inde-

pendence statement to step 3. If step 3 returns T,
apply the rule; otherwise, skip to the next rule.

2.2 After all Rprob have been applied, proceed to this step.
a) For ECC, go to step 5;
b) For NCC, send the events under probabilities in the

current formula f to step 4 (then go to step 5).
Step 3: Check of whether an independence statement hold

under the independence assumptions.
Inputs:
1) an independence statement of form X ⊥⊥ Y or X ⊥⊥ Y|Z,

where X, Y, and Z are event expressions;
2) I—a set of independence assumptions;

3) Rindep—a list of transformation rules for independence.
Output: T (if the statement can be assumed to be true) or

F (if not enough information to conclude independence).
Substeps:

3.1 Apply rules Rindep to I. This produces a larger set of
independence statements assumed to be true;

3.2 Return T if the given statement is in the produced set.
Otherwise, return F.

Step 4 (NCC Only): Produce numeric probability estimates
for the set of events requested in substep 2.2.

Inputs:
1) events E in F . requested in substep 2.2;
2) a labeled detector trace (sgt, sdo).

Output: Probability estimates P̂r for the requested events.
Substeps:

4.1 for each event in E, calculate a count-based estimate
analogously to (5) but over trace (sgt, sdo);

4.2 send all probability estimates P̂r(E) to step 5.
Step 5: Calculate a numeric estimate êr of error rate er.
Inputs:
1) Formula f (Pr(F)) from step 2.2;
2) (ECC only) known probabilities Pr(F);
3) (NCC only) estimated probabilities P̂r(F).

Output: A numeric estimate of error rate êr(M).

Substeps:
5.1 Replace each probability in f (Pr(F)) with its value;

a) ECC uses known probability values Pr(F);
b) NCC uses the estimates P̂r(F) from step 4.

5.2 Calculate the numeric expression and return the result.

C. Example of ECC/NCC Application

As an illustration, we walk through8 the NCC calculation
of fnr(Mpr). As inputs we have the definition of Mpr in (2)
with some known value of d, a labeled trace (sgt, sdo) for Pl,
and P̂ = {fpr(Pl), fnr(Pl)}, rules R, and two independence
assumptions: (4) and that only the current ground truth affects
the detector output

∀i : N, 1 ≤ i ≤ k ·
DOi ⊥⊥ GT1 . . . GTi−1, GTi+1 . . . GTk | GTi. (6)

The initial formula er(M) is as follows:

fnr
(¬s

(¬wPl →w �[1,d]Pl
))

. (7)

Step 1.1 replaces →w with ∨ and ¬w, rewrites �[1,d]
using ∨, and distributes ¬s over the ∨ operators in the
parentheses. The outcome is a different detector under fnr

fnr
(
¬wPl ∧ ¬sPl1 ∧ . . . ∧ ¬sPld

)
. (8)

Step 1.2 rewrites (8) as a conditional probability over the
marginal events of the detector under fnr. Specifically, the
rewriting uses events dot and gtf according to the definitions
of operators ∨,¬w, and¬s

(
dof

(
Pl0

)
∨ dou

(
Pl0

))
∧ dof

(
Pl1

)
∧ . . . ∧ dof

(
Pld

)

gtf
(

Pl0
)

∧ gtf
(

Pl1
)

∧ . . . ∧ gtf
(

Pld
)
.

8The full derivation for this error rate formula is in the supplement [10].

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3295

Hence, step 1.2 produces this probability formula

Pr
(
¬

((
dof

(
Pl0

)
∨ dou

(
Pl0

))
∧ dof

(
Pl1

)
∧ . . .

∧ dof
(

Pld
))

| gtf
(

Pl0
)

∧ . . . ∧ gtf
(

Pld
))

. (9)

Then step 2.1 switches the negation to 1 − Pr

1 − Pr
((

dof
(

Pl0
)

∨ dou
(

Pl0
))

∧ dof
(

Pl1
)

∧ . . .

∧ dof
(

Pld
)
| gtf

(
Pl0

)
∧ . . . ∧ gtf

(
Pld

))
. (10)

Now, step 2.1 matches a rule with an independence guard
and sends the events under Pr to step 3. step 3.2 finds that
the assumed (4) matches the provided events and returns T.
Step 2.1 now replaces the above probability with a product
of probabilities of each detector’s events. Furthermore, step
2.1 reduces the conditioning of dofi to gtfi using a rule that
checks (6). A few algebraic transformations in step 2.1 yield
the final formula for fnr(Mpr)

1 − (1 − fpr(Pl))(1 − fpr(Pl) − Pr(dou(Pl) | gtf(Pl)))d.

(11)

Step 2.2 leads to step 4, which estimates the probabilities
fpr(Pl) and Pr(dou(Pl)| gtf(Pl)) from the trace (sgt, sdo) of Pl.
Step 4.1 counts the events of interest [e.g., false positives for
fpr(Pl)] and divides it by the counts of possibilities for false
positives [i.e., ground-truth negatives for fpr(Pl)].

Finally, step 5.1 substitutes the estimates of fpr(Pl) and
Pr(dou(Pl)| gtf(Pl)) into (11). Step 5.2 yields a numeric
estimate of fnr(Mpr). We investigate the accuracy of such
estimates in the next section.

To summarize, this section introduced three analyses of
error rates. ECC consists of two stages: 1) symbolic manipu-
lation (steps 1–3) and 2) numeric computation (step 5). NCC
consists of three stages: 1) symbolic manipulation (steps 1–3);
2) estimation from data (step 4); and 3) numeric computation
(step 5). BBC consists only of one step—estimation from data.

ECC/NCC can take advantage of their modularity: 1) prior
knowledge about detectors can be used for accurate of; 2) that
the symbolic manipulation can be performed once per monitor
and reused should the data or numerical inputs change; and
3) labeled monitor traces are not required.

VI. EVALUATION: UUV CASE STUDY

Our validation goals are fourfold; we evaluate: 1) the accu-
racy of predictions of monitor error rates by our approach
(NCC) compared to the purely data-driven approach (BBC);
2) the dependency of this accuracy on the amount of provided
data; 3) the sensitivity of our approach to the indepen-
dence assumptions; and 4) the computational costs of our
approach. Note that in 1), NCC is not intended to beat
the accuracy of BBC because it is used on different inputs
in different circumstances; instead, NCC aims to achieve
a comparable accuracy without any traces (mgt, mdo) from
monitors.

At a high level, our evaluation goes as follows. First, we
specify and implement two monitors: 1) Mpr in (3) and
2) Mrf defined below in (13). Second, we collect multiple

labeled traces (outputs and ground truth) of each monitor
and detector. Third, we produce three estimates of an error
rate of each monitor: ECC uses the error rates of the atomic
detector known-by-construction, NCC uses the labeled traces
of the atomic detector, and BBC uses the labeled traces of
monitors.

To evaluate 1), we compare the residuals of NCC and BBC
relative to ECC, which in this case plays the role of the true
monitor error rate. To evaluate 2), we compare these residuals
at different amounts of data provided to NCC and BBC. To
evaluate 3), we compare NCC and BBC on traces with sen-
sor noise that invalidate our independence assumption in (4).
Finally, to evaluate 4), we measure the time it takes to perform
the five steps of NCC.

A. Data Collection

We based our evaluation on the DARPA assured
autonomy case study described in Section II. Data
were collected from a ROS Gazebo UUV simulator
(https://github.com/uuvsimulator/uuv_simulator) customized
with underwater vehicle dynamics and pipeline genera-
tion. We executed 73 pipeline-following missions, totaling
7.7 h of simulation time (the data can be found at
https://github.com/bisc/prob-comp-asst). Each mission started
with the pipeline in view and terminated 30 s after the
pipeline was no longer visible (either due to successful
completion or getting lost). We kept all the system design
parameters (including the controller) fixed across all missions,
with the only variables being the random seed that determines
the pipeline shape9 and the initial position relative to the first
pipeline segment.

During each mission, the pipeline detector Pl provided a
trace of binary values, each indicating the presence of a
pipeline in the UUV’s view at that moment, at the rate of 1 Hz.
Pr(dou) for Pl is set to 0 for simplicity. We used two (mutu-
ally exclusive) types of noise in Pl: 1) stateless and 2) stateful.
The former has fixed fpr and fnr equal to 0.1 by construction,
without any dependency on the past noise (only on the current
GT). The latter is statefully dependent on the past five detec-
tion results, varying with the noise weight w ∈ [0, 1] from 0.1
at best to 0.5 at worst (a coin toss equivalent), simulating the
propensity of noise to persist over time10

fpr(t) = 0.1 + 0.4w ·
∑

i:1..5 �
(
DOt−i = T

)

5
(12)

fnr(t) = 0.1 + 0.4w ·
∑

i:1..5 �
(
DOt−i = F

)

5
.

We investigated two monitors, chosen for their different
syntactic structure.

1) The pipeline recovery monitor Mpr, which has been
described in Section II and formalized in (3)

Mpr := ¬s
(¬wPl →w �[1,d]Pl

)
.

9The pipeline is always a noncircular and nonself-intersecting sequence of
linear segments, and no segment connection angle is less than 90 degrees.

10
�(a) is an indicator function; it returns 1 if a = T and 0 otherwise.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

3296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

2) A monitor Mrf for the “reliable following” detector
ϕrf := �[0,d]Pl, requiring that the pipeline is confidently
perceived for d samples:

Mrf := ¬s�[0,d]Pl. (13)

By feeding the ground-truth and noisy detector samples into
each monitor, we obtained the mgt and mdo traces respec-
tively. Thus, for each of the two composite detectors, each
mission provided four binary-valued traces of equal length: a
ground truth/noisy pair of traces for the pipeline detection, and
a ground truth/noisy pair of traces for the monitor.

All experiments were run on a Lenovo X1 laptop with
Ubuntu 18.04 LTS, Intel Core i7-6600U CPU at 2.60 GHz,
16-GB DDR3 RAM, and an internal SATA SSD hard drive.

B. Variables and Sampling

We estimate one rate for each monitor: FNR for Mpr

using (11), and FPR for Mrf using a formula derived in the
supplement [10]. We chose these specific rates because they
have a larger range of values for different d, from 0.2 to over
0.95. The other two rates—fpr(Mpr) and fnr(Mrf)—have low
values, barely exceeding 0.01 at their highest.

Thus, our results have four independent variables: 1) a cho-
sen monitor; 2) a mission number; 3) a deadline;11 and 4) a
noise weight w. Our primary dependent variables are ECC,
NCC, and BBC. Given a monitor, ECC depends only on d,
whereas NCC and BBC depend on d and a subset of missions
from which the data are used. In all comparisons below, we
always provided the same subset of missions to both NCC
and BBC.

Our secondary dependent variables are the errors between
the estimates and the amounts of information available in
the traces. We use the root-mean-squared error (RMSE) as
a standard measure between real-valued point estimates. For
estimating FNR, the amount of information is determined by
the number of gtt events of the monitor: BBC considers the
FNR a probability parameter of a binomial random variable,
and each gtt is a sample of this variable. Likewise, for esti-
mating FPR, the information is measured by the count of gtf
events.

The evaluation 2 samples across all nontrivial subsets of our
trace dataset (sizes from 1 to 72) with replacement. We pick a
fixed number (40) of randomly (uniformly) chosen subsets for
each size. In the analyses related to RMSE, the averaging is
done over fixed-sized bins for the amounts of information (i.e.,
the counts of monitor gtt or gtf events). The only exception
to this sampling strategy is the first accuracy analysis, where
we use our full dataset for an estimate.

C. Results

1) Evaluation 1—Accuracy: We evaluated the accuracy of
calculations for different values of deadline d using the full
dataset with stateless noise (w = 0). For both monitors, the
differences between NCC, BBC, and ECC were small, with
all three closely tracing each other (see the supplement [10]

11The “deadline” is the value of time bound d in both monitor definitions.

Fig. 3. Log-RMSE of FNR predictions (d = 10) for Mpr , relative to the
amount of information.

Fig. 4. NCC and BBC for FNR of Mpr (d = 10) relative to weight w.
Baseline ECC is shown for w = 0, for context.

for the figures). For FNR of Mpr, the error of BBC increases
slightly for d > 20. The RMSE of NCC (relative to ECC)
across all values of d ∈ [2, 30] is 0.015, and 0.013 for
BBC (also relative to ECC). While NCC has a larger error,
it stays consistent across all d values, whereas BBC accu-
racy varies because BBC needs data for each value of d. For
larger d > 20, fewer datapoints trigger the monitor’s ground-
truth alarm, making it harder for BBC to produce accurate
estimates. For the FPR of Mrf , the differences were negligi-
ble: the average absolute error is on the order of 0.001 for
both NCC and BBC.

2) Evaluation 2—Data Dependency: Here, we analyze how
estimate error changes relative to the amount of information
(keeping w = 0, d = 10 for illustration). Fig. 3 shows the
RMSE of NCC and BBC for Mpr produced by sampling dif-
ferent data subsets. Each point in the plot is produced by
averaging the squared error for a 25-wide bin,12 and the min-
imum number of samples per bin is 37. This figure indicates
that NCC is more accurate than BBC for small amounts of
data, while the BBC gets increasingly more accurate for larger
amounts. Notice a logarithmic scale: the small-data errors are
orders of magnitude larger than the large-data errors. The sud-
den drop of BBC is a sampling artifact: BBC converges to the
full-dataset estimate of FNR, which in this case happens to be
close to ECC. No such phenomenon was observed for Mrf :
NCC is more accurate for all data amounts, as shown in the

12Binned over the x-axis; each bin’s result is plotted at its lower bound.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3297

Fig. 5. Dependency of computation times of two formula manipulations and
data estimation on the formula size.

supplement [10], confirming that the BBC error is higher for
larger deadlines.

3) Evaluation 3—Sensitivity to Independence Assumptions:
In the previous two evaluations, the noise profile (w = 0)
matched our independence assumption (4). Here, though, we
intentionally set w ∈ (0, 1] to disrupt this assumption and
observe the effect on the NCC estimates. Fig. 4 shows that
for full-data estimates NCC and BBC increase significantly
for larger w. We do not have the ground-truth values for mon-
itor error rates for w > 0: a true Markov model for their
calculation needs the true detector event probabilities, which
are simulated and not known exactly. Therefore, ECC is only
shown to illustrate the increase in the FNR. NCC diverges
from BBC by over 0.1 for w ≥ 0.9, overestimating the FNR.
The supplement [10] shows an analogous picture for Mrf .

4) Evaluation 4—Computational Costs: To measure the
computation times of our approach, we consider its two parts:
1) formula manipulation (steps 1–3 and 5)13 and 2) estimation
from data (step 4). The former is performed in ECC and NCC
and has indistinguishable performance in both cases. The lat-
ter is performed in NCC (for detector probabilities P̂r) and
BBC (for monitor rate estimates êr).

The computation times for formula manipulation, shown in
Fig. 5, increase with monitor formula size, linearly determined
by parameter d. While small formulas take fractions of a sec-
ond, the magnitude of growth varies with the formula and the
rule list. The time to analyze fpr(Mrf) never takes longer than
a second, exhibiting a slow and linear growth. On the other
hand, the analysis of fnr(Mpr) exhibits a polynomial growth
in complexity and takes close to 10 s for d = 30. We wit-
nessed an exponential complexity growth for some rule lists
that introduce many probability terms (e.g., by transforming
disjunctions into sums of probabilities). The estimation of rates
for monitors and detectors alike does not depend on the for-
mula size and, for our dataset, takes approximately 1 s on
average for one detector/monitor.

D. Interpretation of Results

NCC and BBC estimates benefit differently from getting
more data. How useful extra data are depends on the prob-
ability of the GT events used in the respective calculation.

13Step 5 is virtually instantaneous and was timed together with the symbolic
manipulation steps (1–3), which are computationally intensive.

For estimating fnr(Mpr), NCC uses events gtf(Pl) [to estimate
fpr(Pl)], which are 1.58 times more likely than the gtt(Mpr)

events (for d = 10) used by BBC. Whereas for estimat-
ing fpr(Mrf), NCC uses events gtt(Pl) [to estimate fnr(Pl)],
which are 2.02 times more likely than the gtf(Mrf) events
(for d = 10) used by BBC. Thus, NCC for Mrf gets a
larger information advantage over BBC per trace, than in case
of Mpr.

The absence of relevant ground-truth events puts the BBC at
a significant disadvantage. We notice that larger d for Mpr, but
not Mrf . This is explained by the reduced chance of pipe-loss
events (gtt(Mpr)) as the definition of a pipe loss is relaxed
by increasing d. On the other hand, satisfaction events for
reliable-following (gtf(Mpr)) do not drop as drastically, since,
for most of each trace, the UUV follows the pipeline suc-
cessfully. As a result, NCC performs better than the BBC for
d ≥ 15. We conclude that composite detectors with infrequent
violations would benefit from our approach for FNR estima-
tion, whereas those with infrequent satisfactions should use
our approach for FPR estimation.

The evaluation also highlights two benefits of compositions.
First, the events for atomic detectors are typically more preva-
lent than those for monitors, making it easier to estimate and
compose the error rates of detectors—as opposed to observing
rare monitored events. Second, NCC can reuse the results of its
steps. If the monitor formula changes, it can redo the formula
manipulation and reuse the estimates P̂r. If the detectors or
available data change, NCC can redo steps 4 and 5 and reuse
the outcomes of symbolic manipulation for any value of d. In
contrast, whenever the formula (e.g., the value of d) changes,
BBC needs new monitor traces and redoes the whole analysis.
These benefits have the potential to reduce the data collection
burden and speed up design space exploration: poor-quality
monitors can be eliminated from the design or used to justify
hardware/software upgrades.

E. Limitations

Our approach is indeed sensitive to the independence
assumptions: the more they are violated, the more we devi-
ate from the data-driven estimates. However, for Mpr and
Mrf , assuming independence of events that are in fact depen-
dent leads to upper-bounding the true error rate. This happens
because independent events lead to smaller probabilities in
(10) compared to a stateful dependency. Hence, in this case,
our estimates are conservative upper bounds.

Therefore, one guideline is to carefully pick indepen-
dence assumptions by consulting the domain and system
experts (by asking them about stateful/stateless events,
causal relations, etc.). For example, we could handle
w > 0 in the noise model in (12) by making the
Markovian assumptions on detector Pl such as DOt ⊥⊥
DOt−j | GTt, DOt−1 . . . DOt−5 for j > 5, instead of (4).
This would change the FNR calculation, requiring estimation
of, e.g., Pr(dof(Plt) | gtf(Plt), dof(Plt−1) . . . dof(Plt−5)). Our
analysis procedure would remain the same.

Another way to handle independence assumptions is to val-
idate them on data, e.g., by informally comparing probabilities

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

3298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

or doing chi-squared tests. Any way of validating these
assumptions would fit into our framework.

The produced error rate estimates are not invariant to
some changes in the system. Examples include changing the
sampling rate and retraining the perception. To update the
estimates for a new perception, data collection and step 4
of our analysis need to be repeated. However, the Pl rate
estimates we produced would be invariant to deploying a
higher-performance controller, which may increase Pr(gtt(Pl))
but not change fpr(Pl). We plan to investigate reusing the part
of the data and calculations for limited changes in the system.

The relative errors of NCC and BBC will vary for
other monitors and systems. Simple monitors of low-variance
systems may not benefit from our approach. For complex
systems though, our approach could avoid prohibitively diffi-
cult testing of rare monitored conditions. Either way, we expect
our qualitative observations to still hold.

VII. RELATED WORK

The existing work related to this article can be grouped into
two large categories: 1) detection and monitoring of uncertain
events and 2) probabilistic and logical reasoning.

A. Detection, Monitoring, and Error

A combination of detection algorithms is a well-explored
technique in many areas, giving rise to a variety of rela-
tions between the objects of composition. In perception, sensor
fusion reconciles multiple uncertainties about an observed phe-
nomenon. Popular approaches, such as the Kalman filtering
and the Bayesian methods, link the inputs via process and mea-
surement models [14], whereas we do not rely on such models
and therefore only require specific knowledge about certain
probabilities. In machine learning, ensemble methods, such as
bagging, boosting, and stacking [15] aim to improve the learn-
ing performance given multiple algorithms (e.g., for anomaly
detection [16]). They aggregate the outputs of learners in
dynamic ways, such as voting on them or averaging them.
This article focuses on prespecified logical/temporal relations
between the outputs of black-box detection algorithms.

Logically specified properties are often used for safety
monitoring and runtime verification in CPS. For STL, robust-
ness [17], [18] takes a worst-case view on error, measuring
the maximum deviation to violate the property. We focus
on the average-case (probabilistic) error measures, such as
false-positive and false-negative rates [6]. Typically estimated
directly from samples, such measures do not necessarily
transfer to the deployment environment. We provide a more
rigorous way to estimate error rates based on probabilistic
computations.

Monitoring of probabilistic logical properties addresses a
different problem, but uses relevant techniques: it relies on
the information from the observed data to test whether a
probability constraint holds. Approaches, such as ProMo [19],
PTPSC [20], and BaProMon [21] perform online checks
of probability constraints via statistical hypothesis tests.
Similarly, statistical approaches can estimate monitor error
rates, although at design time: each rate is modeled as a

Bernoulli random variable, with its parameter estimated from
monitor traces. As we show in Section VI, the downside of
this approach is the need to observe and label potentially rare
events for each monitor under analysis, necessitating extensive
data collection. In contrast, our approach uses atomic, more
observable inputs.

B. Probability, Logic, and Inference

We distinguish two groups of combinations of formal logics
and probability theory [22]: those with probabilistic entailment
(i.e., logics of probability [23]), and those with probability
operators (i.e., probabilistic logics [24]). The former type of
logics (e.g., Adams’ logic [25]) uses the classic logical syntax
and performs uncertainty propagation, from the uncertainties
of premises to the uncertainty of the conclusion. These logics
address a problem different from ours: they manipulate uncer-
tain knowledge about certain statements (e.g., “the system is
safe” has a 95% chance of being true), whereas this arti-
cle manipulates certain statements about uncertain phenomena
(e.g., “the chance of false positive is 5%” is true).

The latter type of logics use probability operators over
events; for example, the PCTL [5] can describe probabilistic
transition systems. A typical use of such logics is to model-
check the desired property on a known model or develop a set
of premises that would prove or disprove the property deduc-
tively. Similarly to these logics, we reason about probabilities
of related events, but do not use explicit probability opera-
tors in our syntax. Furthermore, our approach also does not
require models of systems dynamics or trustworthy premises
that logically entail the desired statement.

A notable recent probabilistic logic is the chance-
constrained temporal Logic (C2TL) [26], which turns con-
straints on probabilities of deterministic predicates into
optimization problems for the controller synthesis. Similar
to our approach, C2TL probabilistically handles perception
uncertainty of logically related events. The key difference is
that we solve a probability estimation—not control—problem
and thus rely on error rates of atomic detectors instead of
chance constraints and a plant model.

Logic-free probabilistic inference often uses graphical mod-
els, such as the Bayesian nets and the Markov chains [13].
Usually approximate, this inference computes a probability
query given a network fitted to the data. Instead of fitting a
model, we discharge part of the problem by performing exact
symbolic transformations, which allows us to handle arbitrary
logical relationships. In the future, we hope to use graph-
ical models to perform (in)dependence calculations for our
approach.

VIII. DISCUSSION

The reader may notice that the values of FPR and FNR
described in the evaluation are unacceptably high for a safety-
critical monitor: most of the time, the Mpr would not detect
that the UUV has lost the pipeline. This finding came unex-
pectedly to the authors, and it illustrates the benefit of applying
our approach in early design stages. Two responses would
reduce the monitor’s error rates: 1) significant improvements

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

RUCHKIN et al.: COMPOSITIONAL PROBABILISTIC ANALYSIS OF TEMPORAL PROPERTIES OVER STOCHASTIC DETECTORS 3299

to the pipe detector (i.e., reducing its FPR and FNR below
0.1) or 2) redefining the properties (e.g., the loss of pipeline
occurs if it was not visible for 2 out of 3 s). For instance, if
the pipe detector is improved such that fpr(Pl) = 0.01, then
fnr(Mpr) is lowered from 0.651 to 0.096 for d = 10. Similarly,
setting fnr(Pl) = 0.01 reduces fpr(Mpr) from 0.686 to 0.105
for d = 10. This reduction indicates that our estimation can
inform impactful design choices.

We note a dual relationship between the modalities in detec-
tor formulas and the FNR/FPR computations. The detectors
with the box modality lead to straightforward computations
of FNR (given standard independence assumptions) and rela-
tively large values for it, whereas the computations for FPR
rely on complex formulas and produce small values. For
diamond modalities, the situation is reversed: simple compu-
tations for large FPRs, and complex computations for small
FNRs. Formally, this is due to the conditioning in the error
rate definition—either on conjunction (simple) or a disjunction
(complex).

A. Future Work

Several important research directions are opened by this
article. One such direction is enhancing the framework out-
puts. First, one could improve accuracy for limited data by
moving from point estimates to interval estimates with uncer-
tainty. Also, the framework could explore the design space by
optimizing error rates over parameters in probability formulas.

Another direction is transitioning the analysis to run
time. One could continuously maintain the estimates of
the analysis inputs and update the error rate estimates as
needed. Monitoring independence assumptions between detec-
tors would be particularly useful to compensate for design-
time simplifications. Furthermore, our analysis could predict
the probability of future events (e.g., crashes) that are logically
connected to the observed events.

Finally, one can envision a CPS design environment that
iterates through sets of independence assumptions that would
be sufficient to calculate the desired rate given the known
inputs. This environment would suggest alternative inde-
pendence setups to the engineers along with the additional
required inputs (and their uncertainties), making the design
choices more transparent and automated.

B. Conclusion

This article proposed a modeling and analysis framework
for logical compositions of detectors. The modeling part rep-
resented atomic detectors as compact probability spaces and
composed them with 3-value temporal-logic formulas. The
analysis part estimated the error rates of composite detectors
by manipulating symbolic probability expressions, via inde-
pendence inference and estimation from data. Our evaluation
on a pipeline detection case study showed that our framework’s
estimates were accurate within fractions of a percent and com-
parable to purely data-based (noncompositional) estimates on
monitor traces.

ACKNOWLEDGMENT

The authors thank Taylor Carpenter and Hyonyoung Choi
for their help with the UUV simulator. They also thank the
anonymous reviewers for their insightful comments.

REFERENCES

[1] K. Havelund and G. Reger, “Runtime verification logics a language
design perspective,” in Models, Algorithms, Logics and Tools: Essays
Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th
Birthday. Cham, Switzerland: Springer, 2017, pp. 310–338.

[2] E. Bartocci et al., Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications. Cham,
Switzerland: Springer, Jan. 2018, pp. 135–175.

[3] A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annu. Symp.
Found. Comput. Sci., Oct. 1977, pp. 46–57.

[4] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent., 2014, pp. 1–6.

[5] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects Comput., vol. 6, pp. 512–535, Sep. 1994.

[6] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical Methods for Rates &
Proportions, 3rd ed. Hoboken, NJ, USA: Wiley Intersci., 2003.

[7] H. Cramer, Mathematical Methods of Statistics. Princeton, NJ, USA:
Princeton Univ. Press, 1999.

[8] A. Bauer, M. Leucker, and C. Schallhart, “Monitoring of real-time
properties,” in FSTTCS. Berlin, Germany: Springer, 2006.

[9] B. Konikowska, “A three-valued linear temporal logic for reasoning
about concurrency,” ICS PAC, Warsaw, Poland, Rep., Nov. 1998.

[10] I. Ruchkin, O. Sokolsky, J. Weimer, T. Hedaoo, and I. Lee,
“Supplementary materials for compositional probabilistic analysis of
temporal properties over stochastic detectors,” Univ. Pennsylvania, Dept.
Comput. Inf. Sci., Rep., Jul. 2020, doi: 10.13140/RG.2.2.27777.07522.

[11] S. C. Kleene, Introduction to Metamathematics. Amsterdam,
The Netherlands: North-Holland, 1952.

[12] P. J. Brockwell, Time Series: Theory and Methods. New York, NY, USA:
Springer, 2009.

[13] D. Koller, N. Friedman, and F. Bach, Probabilistic Graphical Models:
Principles and Techniques. Cambridge, MA, USA: MIT Press, Jul. 2009.

[14] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion:
A Handbook of Algorithms. Mansfield, CT, USA: YBS, Apr. 2011.

[15] O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data
Min. Knowl. Discov., vol. 8, no. 4, 2018, Art. no. e1249.

[16] C. C. Aggarwal, Outlier Analysis. New York, NY, USA: Springer,
Jan. 2013.

[17] J. V. Deshmukh, A. Donze, S. Ghosh, X. Jin, G. Juniwal, and
S. A. Seshia, “Robust online monitoring of signal temporal logic,”
Formal Methods Syst. Des., vol. 51, no. 1, pp. 5–30, Aug. 2017.

[18] H. Abbas, Y. V. Pant, and R. Mangharam, “Temporal logic robustness
for general signal classes,” in Proc. Int. Conf. Hybrid Syst. Comput.
Control, Apr. 2019, pp. 45–56.

[19] L. Grunske and P. Zhang, “Monitoring probabilistic properties,” in Proc.
ESEC/FSE, 2009, pp. 183–192.

[20] P. Zhang, W. Li, D. Wan, and L. Grunske, “Monitoring of probabilis-
tic timed property sequence charts,” Softw. Pract. Exp., vol. 41, no. 7,
pp. 841–866, 2011.

[21] Y. Zhu, M. Xu, P. Zhang, W. Li, and H. Leung, “Bayesian probabilistic
monitor: A new and efficient probabilistic monitoring approach based
on Bayesian statistics,” in Proc. 13th Int. Conf. Qual. Softw., Jul. 2013,
pp. 45–54.

[22] R. Haenni, J.-W. Romeijn, G. Wheeler, and J. Williamson, Probabilistic
Logics and Probabilistic Networks. Dorchester, The Netherlands:
Springer, 2011.

[23] A. Sernadas, J. Rasga, and C. Sernadas, “On probability and logic,”
Portugaliae Mathematica, vol. 74, no. 4, pp. 267–313, Feb. 2018.

[24] G. De Bona, F. G. Cozman, and M. Finger, “Towards classifying propo-
sitional probabilistic logics,” J. Appl. Logic, vol. 12, no. 3, pp. 349–368,
2014.

[25] E. Adams, A Primer of Probability Logic. Stanford, CA, USA: CSLI,
1998.

[26] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia, “Safe autonomy
under perception uncertainty using chance-constrained temporal logic,”
J. Autom. Reason., vol. 60, no. 1, pp. 43–62, Jan. 2018.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on November 03,2020 at 00:55:20 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.13140/RG.2.2.27777.07522

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

