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Abstract—This supplement contains additional material for
the article “Compositional Probabilistic Analysis of Temporal
Properties over Stochastic Detectors” (by the same authors) from
the ESWEEK-TCAD special issue, presented in the International
Conference on Embedded Software 2020. The supplement con-
tains the additional semantics, derivations, and visualizations.
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APPENDIX

This is a supplement for the main paper, Compositional
Probabilistic Analysis of Temporal Properties over Stochastic
Detectors, which can be found in the special issue of IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems for the Embedded Systems Week 2020.

This document contains the following sections:
• Features of LTL3d (Appendix A)
• Full Definitions for Detector Compositions (Appendix B)
• Sufficiency of Defining Detector Events (Appendix C)
• Consistent Probability Extension in Multi-Detector

Spaces (Appendix D)
• Independence of Detector Variables and Events (Ap-

pendix E)
• Logical Tautologies for Detectors (Appendix F)
• Rules for Probability Reasoning (Appendix G)
• Rules for Independence Reasoning (Appendix H)
• Full Derivation of Error Rate Formulas for Monitors

(Appendix I)
• Additional Figures for Evaluation (Appendix J)
The implementation of the computational assistant, as well

as the pipeline monitoring dataset, can be found at https://
github.com/bisc/prob-comp-asst.

A. Features of LTL3d

The 3-value linear temporal logic for detectors, LTL3d, has
the following features:
• Two interpretations: 3-value [[[]]] and 2-value [[]]. The

former follows Kleene’s strong logic [1], and the latter
follows the classic binary LTL [2].

• Linear temporal modalities with time bounds.
• Three negation operators: ¬¬¬¬s, ¬¬¬¬w, and ¬¬¬¬se.
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• Finite traces, assumed to be sufficiently long to evaluate
a given formula.

Syntactic sugar is defined based on its core syntax:

F ≡ ¬¬¬¬sT

ϕ1 ∧ϕ2 ≡ ¬¬¬¬s(¬¬¬¬sϕ1 ∧∧∧∧ ¬¬¬¬sϕ2)

ϕ1 →→→→s ϕ2 ≡ ¬¬¬¬sϕ1 ∨∨∨∨ ϕ2

ϕ1 →→→→w ϕ2 ≡ ¬¬¬¬wϕ1 ∨∨∨∨ ϕ2 (1)
ϕ1 →→→→se ϕ2 ≡ ¬¬¬¬seϕ1 ∨∨∨∨ ϕ2

♦♦♦♦ [m,n]ϕ ≡ T UUUU [m,n] ϕ

���� [m,n]ϕ ≡ ¬¬¬¬s♦♦♦♦ [m,n]¬¬¬¬sϕ

B. Full Definitions for Detector Compositions

This section provides full expressions for the marginal
events of composite detectors. All of these expressions form
the list Rev used in Step 1.2 of the analysis. In this section,
superscripts indicate temporal or set indexing; subscripts indi-
cate different detectors. Table I shows the events of common
compositions.

Strong negation ¬¬¬¬s:

gtt(¬¬¬¬sD) = gtf(D) (2)
gtf(¬¬¬¬sD) = gtt(D)

dot(¬¬¬¬sD) = dof(D) (3)
dof(¬¬¬¬sD) = dot(D)

dou(¬¬¬¬sD) = dou(D)

Weak negation ¬¬¬¬w:

gtt(¬¬¬¬wD) = gtf(D) (4)
gtf(¬¬¬¬wD) = gtt(D)

dot(¬¬¬¬wD) = dof(D) ∨ dou(D) (5)
dof(¬¬¬¬wD) = dot(D)

dou(¬¬¬¬wD) = F

Strong exclusive negation ¬¬¬¬se:

gtt(¬¬¬¬seD) = gtf(D)

gtf(¬¬¬¬seD) = gtt(D)

dot(¬¬¬¬seD) = dof(D)

dof(¬¬¬¬seD) = dot(D) ∨ dou(D)

dou(¬¬¬¬seD) = F

https://github.com/bisc/prob-comp-asst
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Event Da ∧∧∧∧ Db Da ∨∨∨∨ Db ¬¬¬¬sD ¬¬¬¬wD ¬¬¬¬seD

gtt(D′) gtt(Da) ∧ gtt(Db) gtt(Da) ∨ gtt(Db) gtf(D) gtf(D) gtf(D)

gtf(D′) gtf(Da) ∨ gtf(Db) gtf(Da) ∧ gtf(Db) gtt(D) gtt(D) gtt(D)

dot(D′) dot(Da) ∧ dot(Db) dot(Da) ∨ dot(Db) dof(D) dof(D) ∨ dou(D) dof(D)

dof(D′) dof(Da) ∨ dof(Db) dof(Db) ∧ dof(Db) dot(D) dot(D) dot(D) ∨ dou(D)

dou(D′) dou(D1)∧dou(D2)∨
dou(D1)∧dot(D2)∨
dou(D2) ∧ dot(D1)

dou(D1)∧dou(D2)∨
dou(D1)∧dof(D2)∨
dou(D2) ∧ dof(D1)

dou(D) F F

Table I: Detector compositions defined through the events of new detector D′.

Conjunction ∧∧∧∧ :

gtt(Da ∧∧∧∧ Db) = gtt(Da) ∧ gtt(Db) (6)
gtf(Da ∧∧∧∧ Db) = gtf(Da) ∨ gtf(Db)

dot(Da ∧∧∧∧ Db) = dot(Da) ∧ dot(Db) (7)
dof(Da ∧∧∧∧ Db) = dof(Da) ∨ dof(Db)

dou(Da ∧∧∧∧ Db) = dou(Da) ∧ dou(Db) ∨
dou(Da) ∧ dot(Db) ∨
dou(Db) ∧ dot(Da)

Disjunction ∨∨∨∨ :

gtt(Da ∨∨∨∨ Db) = gtt(Da) ∨ gtt(Db),

gtf(Da ∨∨∨∨ Db) = gtf(Da) ∧ gtf(Db),

dot(Da ∨∨∨∨ Db) = dot(Da) ∨ dot(Db),

dof(Da ∨∨∨∨ Db) = dof(Da) ∧ dof(Db),

dou(Da ∨∨∨∨ Db) = dou(Da) ∧ dou(Db) ∨
dou(Da) ∧ dof(Db) ∨
dou(Db) ∧ dof(Da)

Until UUUU [m,n]:

gtt(Da UUUU [m,n] Db) = ∃t ∈ [m..n] · gtt(Dt
b) ∧ gtt(D1

a) ∧ . . .

∧ gtt(Dt−1
a )

gtf(Da UUUU [m,n] Db) =
(
∀t ∈ [m..n] · gtf(Dt

b)
)
∨(

∃t ∈ [m..n] · gtf(Dt
a) ∧ gtf(Dm

b ) ∧ . . .

∧ gtf(Dt−1
b )

)
dot(Da UUUU [m,n] Db) = ∃t ∈ [m..n] · dot(Dt

b) ∧ dot(D1
a) ∧ . . .

∧ dot(Dt−1
a )

dof(Da UUUU [m,n] Db) =
(
∀t ∈ [m..n] · dof(Dt

b)
)
∨(

∃t ∈ [m..n] · dof(Dt
a) ∧ dof(Dm

b ) ∧ . . .

∧ dof(Dt−1
b )

)
dou(Da UUUU [m,n] Db) = ¬dot(Da UUUU [m,n] Db) ∧

¬dof(Da UUUU [m,n] Db)

Always ���� [1,n]:

gtt(���� [1,n]D) = gtt(D1) ∧ . . . ∧ gtt(Dn)

gtf(���� [1,n]D) = gtf(D1) ∨ . . . ∨ gtf(Dn)

dot(���� [1,n]D) = dot(D1) ∧ . . . ∧ dot(Dn)

dof(���� [1,n]D) = dof(D1) ∨ . . . ∨ dof(Dn)

dou(���� [1,n]D) =
∨

S:P(1..n)

(
∧
i:S

dot(Di)
∧

j:P(1..n)\S

dou(Dj))

where P () stands for a powerset.
Eventually ♦♦♦♦ [1,n]:

gtt(♦♦♦♦ [1,n]D) = gtt(D1) ∨ . . . ∨ gtt(Dn)

gtf(♦♦♦♦ [1,n]D) = gtf(D1) ∧ . . . ∧ gtf(Dn)

dot(♦♦♦♦ [1,n]D) = dot(D1) ∨ . . . ∨ dot(Dn)

dof(♦♦♦♦ [1,n]D) = dof(D1) ∧ . . . ∧ dof(Dn)

dou(♦♦♦♦ [1,n]D) =
∨

S:P(1..n)

(
∧
i:S

dof(Di)
∧

j:P(1..n)\S

dou(Dj))

Based on the above definitions, syntactic sugar for unary
modal operators is part of Rlog:

���� [m,n]D ::= Dm ∧∧∧∧ . . . ∧∧∧∧ Dn (8)
♦♦♦♦ [m,n]D ::= Dm ∨∨∨∨ . . . ∨∨∨∨ Dn (9)

C. Sufficiency of Defining Detector Events

Here we prove that a detector is unambiguously defined by
its marginal events.

A detector is fully identified by its two random variables
DO and GT . Therefore, to show that two detectors are
identical, it is necessary and sufficient that their random vari-
ables always take the same values. The following proposition
demonstates that all of the above definitions via events (gtt,
gtf , dot, dof , and dou) unambiguously determine a detector,
and hence no additional information is required.

Proposition 1. If arbitrary detectors D1 and D2 in the same
space Ω have respectively co-occurring1 events gtt, gtf , dot,
dof , and dou, then their r.v.s DO1 and DO2, as well as GT 1

and GT 2, always take the same values.

Proof. Events gtt and gtf fully determine the values of GT 1

and GT 2. Since the events always co-occur, it follows that
GT 1 = GT 2.

1Meaning that gtt(D1) occurs iff gtt(D2) occurs — and the same for
the other four pairs of events.
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Similarly, events dot, dof , and dou fully determine the
values of GT 1 and GT 2. Therefore, from their co-occurrence
it follows that always DO1 = DO2.

D. Consistent Probability Extension in Multi-Detector Spaces

The multi-detector probability space (Ω,F ,Pr) has a dis-
crete probability measure Pr that is extended from measures
Pr1 . . . Prn of the individual detector spaces. This extension
of Pr is largely undetermined a priori because it depends
on how the r.v.s behave jointly; Pr is only constrained by
the Kolmogorov axioms and consistency with the individual
Pr1 . . . Prn measures on the events of individual detectors.

The consistency with between Pr and Pr1 . . . Prn requires
that the latter measures of any marginal event ei ∈ F i (of the
i-th detector, for any i ∈ {1 . . . n}) equal the Pr measure of
this event’s projection onto F :

Pri(ei) = Pr({(Ω1, . . . ei . . . ,Ω
n)})

This requirement is satisfied by fixing Ω in each specific
case and addressing events in F by their unique names (e.g.,
dot(D1)), as we do in our notation.

E. Independence of Detector Variables and Events

The independence statement GT i ⊥⊥ GT i+1 is equivalent
to the following four assertions:

Pr(gtt(Di) ∧ gtt(Di+1)) = Pr(gtt(Di))Pr(gtt(Di+1))

Pr(gtt(Di) ∧ gtf(Di+1)) = Pr(gtt(Di))Pr(gtf(Di+1))

Pr(gtf(Di) ∧ gtt(Di+1)) = Pr(gtf(Di))Pr(gtt(Di+1))

Pr(gtf(Di) ∧ gtf(Di+1)) = Pr(gtf(Di))Pr(gtf(Di+1))

F. Logical Tautologies for Detectors

All of the tautologies in this subsection are straightforwardly
derived from the semantics of the operators by calculating and
comparing the events on both sides.

These tautologies belong to two rule lists: Rlog and Rev.
Both lists are used in Step 1 of the analysis part. The rules
replace the left part with the right part of the equations

Multiple Negations: Double negations can be removed with
¬¬¬¬s, but not with ¬¬¬¬w or ¬¬¬¬se:

¬¬¬¬s¬¬¬¬sD = D (Rlog)

¬¬¬¬w¬¬¬¬wD 6= D

¬¬¬¬se¬¬¬¬seD 6= D

However, limited tautologies apply to double negations of
¬¬¬¬w and ¬¬¬¬se:

dot(¬¬¬¬w¬¬¬¬wD) = dot(D) (Rev)

gtt(¬¬¬¬w¬¬¬¬wD) = gtt(D) (Rev)

gtf(¬¬¬¬w¬¬¬¬wD) = gtf(D) (Rev)

dof(¬¬¬¬se¬¬¬¬seD) = dof(D) (Rev)

gtt(¬¬¬¬se¬¬¬¬seD) = gtt(D) (Rev)

gtf(¬¬¬¬se¬¬¬¬seD) = gtf(D) (Rev)

Any triple negation reduces to a single negation:

¬¬¬¬w¬¬¬¬w¬¬¬¬wD = ¬¬¬¬wD (Rlog) (10)
¬¬¬¬se¬¬¬¬se¬¬¬¬seD = ¬¬¬¬seD (Rlog) (11)

Different negations are not commutative, but ¬¬¬¬w and ¬¬¬¬se

“switch” when ¬¬¬¬s passes over them and the negation outside
¬¬¬¬w and ¬¬¬¬se can be replaced with any other negation:

¬¬¬¬s¬¬¬¬wD 6= ¬¬¬¬w¬¬¬¬sD

¬¬¬¬s¬¬¬¬seD 6= ¬¬¬¬se¬¬¬¬sD

¬¬¬¬w¬¬¬¬seD 6= ¬¬¬¬se¬¬¬¬wD

¬¬¬¬s¬¬¬¬wD = ¬¬¬¬se¬¬¬¬sD = ¬¬¬¬se¬¬¬¬wD = ¬¬¬¬w¬¬¬¬wD (Rlog) (12)
¬¬¬¬s¬¬¬¬seD = ¬¬¬¬w¬¬¬¬sD = ¬¬¬¬w¬¬¬¬seD = ¬¬¬¬se¬¬¬¬seD (Rlog)

De Morgan’s and Distribution Laws: De Morgan’s laws
apply to ¬¬¬¬s:

¬¬¬¬s(Da ∨∨∨∨ Db) = ¬¬¬¬sDa ∧∧∧∧ ¬¬¬¬sDb (Rlog) (13)
¬¬¬¬s(Da ∧∧∧∧ Db) = ¬¬¬¬sDa ∨∨∨∨ ¬¬¬¬sDb (Rlog) (14)

For ¬¬¬¬w and ¬¬¬¬se, De Morgan’s laws work for disjunction
and conjunction respectively, but not the other way around:

¬¬¬¬w(Da ∨∨∨∨ Db) = ¬¬¬¬wDa ∧∧∧∧ ¬¬¬¬wDb (Rlog)

¬¬¬¬se(Da ∧∧∧∧ Db) = ¬¬¬¬seDa ∨∨∨∨ ¬¬¬¬wDb (Rlog)

¬¬¬¬w(Da ∧∧∧∧ Db) 6= ¬¬¬¬wDa ∨∨∨∨ ¬¬¬¬wDb

¬¬¬¬se(Da ∨∨∨∨ Db) 6= ¬¬¬¬seDa ∧∧∧∧ ¬¬¬¬seDb

But limited tautologies are available for the other two cases:

dof(¬¬¬¬w(Da ∧∧∧∧ Db)) = dof(¬¬¬¬wDa ∨∨∨∨ ¬¬¬¬wDb)

= dot(Da) ∧ dot(Db) (Rev)

dot(¬¬¬¬se(Da ∨∨∨∨ Db)) = dot(¬¬¬¬seDa ∧∧∧∧ ¬¬¬¬seDb)

= dof(Da) ∧ dof(Db) (Rev)

Operators ∨∨∨∨ and ∧∧∧∧ are distributive. Only distribution of
conjunctions is used in simplification:

(Da ∨∨∨∨ Db) ∧∧∧∧ Dc = Da ∧∧∧∧ Dc ∨∨∨∨ Db ∧∧∧∧ Dc (Rlog)

(Da ∧∧∧∧ Db) ∨∨∨∨ Dc = (Da ∨∨∨∨ Dc) ∧∧∧∧ (Db ∨∨∨∨ Dc)

Temporal Modalities: With temporal compositions, ¬¬¬¬s be-
haves like a binary negation with LTL modalities, whereas ¬¬¬¬w

and ¬¬¬¬se only do for one of the modalities:

¬¬¬¬s���� [m,n]D = ♦♦♦♦ [m,n]¬¬¬¬sD (Rlog)

¬¬¬¬s♦♦♦♦ [m,n]D = ���� [m,n]¬¬¬¬sD (Rlog) (15)
¬¬¬¬w♦♦♦♦ [m,n]D = ���� [m,n]¬¬¬¬wD (Rlog)

¬¬¬¬se���� [m,n]D = ♦♦♦♦ [m,n]¬¬¬¬seD (Rlog)

¬¬¬¬w���� [m,n]D 6= ♦♦♦♦ [m,n]¬¬¬¬wD

¬¬¬¬se♦♦♦♦ [m,n]D 6= ���� [m,n]¬¬¬¬seD
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Error Rates: Negations ¬¬¬¬w and ¬¬¬¬se are better-behaved
when it comes to calculating error rates: unlike ¬¬¬¬s, they do
not introduce the dependency on the probability of detector
non-confidence:

fpr(¬¬¬¬sD) = fnr(D)− Pr(dou(D) | gtt(D)) (Rlog)

fnr(¬¬¬¬sD) = fpr(D) + Pr(dou(D) | gtf(D)) (Rlog)

fpr(¬¬¬¬wD) = fpr(¬¬¬¬seD) = fnr(D) (Rlog)

fnr(¬¬¬¬wD) = fnr(¬¬¬¬seD) = fpr(D) (Rlog)

For fully independent detectors Da and Db (i.e., any pair of
events from two detectors is conditionally and unconditionally
independent), these rate formulas apply:

fpr(Da ∨∨∨∨ Db) = 1− (1− fpr(Da))(1− fpr(Db))

fnr(Da ∧∧∧∧ Db) = 1− (1− fnr(Da))(1− fnr(Db))

G. Rules for Probability Reasoning

Below is a full list of rules, denoted Rprob, that can be used
for manipulating probability formulas. First are the parameter-
free rules over any expressions A, B, and C. Symbols dnf and
cnf are the functions that return the disjunctive and conjunctive
normal forms of input event expressions, respectively:

Pr(T)→ 1

Pr(F)→ 0

Pr(A | T)→ Pr(A)

Pr(¬A)→ 1− Pr(A)

Pr(A)→ 1− Pr(¬A)

Pr(¬A | B)→ 1− Pr(A | B) (16)
Pr(A | B)→ 1− Pr(¬A | B) (17)
Pr(A | B)→ Pr(A ∧B)/Pr(B)

Pr(A ∧B)→ Pr(A | B) Pr(B)

Pr(A ∨B)→ Pr(A) + Pr(B)− Pr(A ∧B)

Pr(A ∨B | C)→ Pr(A | C) + Pr(B | C)

− Pr(A ∧B | C) (18)
Pr(A ∧B | C)→ Pr(A | B ∧ C) Pr(B | C)

Pr(A | B)→ Pr(B | A) Pr(A)/Pr(B)

Pr(A)→ Pr(dnf(A))

Pr(A | B)→ Pr(dnf(A) | B)

Pr(A)→ Pr(cnf(A))

Pr(A | B)→ Pr(cnf(A) | B) (19)
[A ⊥⊥ C | B] Pr(A | B ∧ C)→ Pr(A | B) (20)
[A ⊥⊥ B | C] Pr(A ∧B | C)→ Pr(A | C) Pr(B | C)

(21)

Parametric rules for probability manipulation, also part of
Rprob, use any event expression X to produce new formulas:

Pr(A)→ Pr(A ∧X)/Pr(X | A)

Pr(A | B)→ Pr(A ∧X | B)/Pr(X | A ∧B)

Pr(A)→ Pr(A ∧X) + Pr(A ∧ ¬X)

Pr(A | B)→ Pr(A ∧X | B) + Pr(A ∧ ¬X | B)

Finally, Rprob has the capacity to equivalently replace
marginal events:

dot(D)→ ¬dof(D) ∧ ¬ dou(D) (22)
dof(D)→ ¬dot(D) ∧ ¬ dou(D) (23)
dou(D)→ ¬dot(D) ∧ ¬ dof(D)

gtt(D)→ ¬ gtf(D)

gtf(D)→ ¬ gtt(D)

H. Rules for Independence Reasoning

The list Rindep contains rules for independence reasoning.
Most of them are parameter-free independence rules for events
A, B, C, and D (binary) with probability greater than 0:

A ⊥⊥ B → B ⊥⊥ A

A ⊥⊥ ¬B → A ⊥⊥ B

A ⊥⊥ B | T→ A ⊥⊥ B

A ⊥⊥ B | C → B ⊥⊥ A | C
A ⊥⊥ ¬B | C → A ⊥⊥ B | C

(A ⊥⊥ C | B) ∧ (A ⊥⊥ B)→ A ⊥⊥ B ∧ C

(A ⊥⊥ C | B ∧D) ∧ (A ⊥⊥ B | D)→ A ⊥⊥ B ∧ C | D
(A ⊥⊥ C | B ∧D) ∧ (A ⊥⊥ D | B)→ A ⊥⊥ D ∧ C | B

(A ⊥⊥ B ∧ C)→ (A ⊥⊥ B) ∧ (A ⊥⊥ C | B)

(A ⊥⊥ B ∧ C)→ (A ⊥⊥ C) ∧ (A ⊥⊥ B | C)

(A ⊥⊥ B ∧ C | D)→ (A ⊥⊥ C | D) ∧ (A ⊥⊥ B | C ∧D)

(A ⊥⊥ B | C) ∧ (A ⊥⊥ C | B)→ (A ⊥⊥ B ∧ C)

(A ⊥⊥ B | C ∧D) ∧ (A ⊥⊥ C | B ∧D)→ (A ⊥⊥ B ∧ C | D)

(A ⊥⊥ B | C ∧D) ∧ (A ⊥⊥ D | B ∧ C)→ (A ⊥⊥ B ∧D | C)

A single parametric independence rule used is for any
expression X with probability greater than 0:

(A ⊥⊥ B | C) ∧ (A ⊥⊥ X | B ∧ C)→ (A ⊥⊥ X | C)

I. Full Derivation of Error Rate Formulas for Monitors

FNR for Monitor of Pipeline Recovery: Here we illustrate
the Steps 1–3 for the NCC/ECC analysis of the FNR of Mpr.
Suppose that the ECC’s known probabilities and the NCC’s
preferred probabilities are the same and equal {fnr(Pl)}. The
independence assumptions are found in Equations (4) and (6)
in the main paper.

The analysis uses the following rules R:
• Rlog : Equations 1, 13, 15, 12, 10, and 8.
• Rev : Equations 6, 7, 4, 5, 2, and 3.
• Rprob : 16, 21, 20, 17, 23, 19, 18, 22.
• Rindep = ∅ (none are needed because the assumption

matches the events exactly).
The monitor is described by the following property:

Mpr = ¬¬¬¬s(¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl)

The analysis of fnr(Mpr) starts with Step 1.1. It uses the
rule in Equation (1) to rewrite →→→→w with ¬¬¬¬w:

¬¬¬¬s(¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl) = ¬¬¬¬s(¬¬¬¬w¬¬¬¬wPl ∨∨∨∨ ♦♦♦♦ [1,d]Pl)
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Next, Step 1.1 advances ¬¬¬¬s using Equations (15) and (13):

¬¬¬¬s(¬¬¬¬w¬¬¬¬wPl ∨∨∨∨ ♦♦♦♦ [1,d]Pl) = ¬¬¬¬s¬¬¬¬w¬¬¬¬wPl ∧∧∧∧ ���� [1,d]¬¬¬¬sPl

Step 1.1 replaces ¬¬¬¬s¬¬¬¬w¬¬¬¬wPl with ¬¬¬¬w¬¬¬¬w¬¬¬¬wPl using
Equation (12) (refer to the first and last expressions), and
¬¬¬¬w¬¬¬¬w¬¬¬¬wPl with ¬¬¬¬wPl using Equation (10). Having done
this, Step 1.1 has arrived at the following formula:

fnr(¬¬¬¬wPl ∧∧∧∧ ���� [1,d]¬¬¬¬sPl)

Finally Equation (8), Step 1.1 rewrites ���� using a sequence
of ∧∧∧∧ operators and outputs the following formula:

fnr
(
¬¬¬¬wPl ∧∧∧∧ ¬¬¬¬sPl1 ∧∧∧∧ . . . ∧∧∧∧ ¬¬¬¬sPld

)
Now, Step 1.2 replaces the fnr operator according to its def-

inition: fnr(Mpr) = Pr(¬dot(Mpr) | gtt(Mpr). The events
dot and dou of the composite detector above are replaced with
Boolean combinations of events of atomic detectors, based on
the rule for operators ∧∧∧∧ , ¬¬¬¬w, and ¬¬¬¬s in Equations (2) to (7):

dot(Mpr) = (dof(Pl0) ∨ dou(Pl0)) ∧ dof(Pl1) ∧ . . .

∧ dof(Pld)

gtt(Mpr) = gtf(Pl0) ∧ gtf(Pl1) ∧ . . . ∧ gtf(Pld)

With all detector operators removed, Step 1.2 returns:

Pr(¬((dof(Pl0) ∨ dou(Pl0)) ∧ dof(Pl1) ∧ . . .

∧ dof(Pld)) | gtf(Pl0) ∧ . . . ∧ gtf(Pld))

Step 1.3 removes the negation using Equation (16):

Pr(¬((dof(Pl0) ∨ dou(Pl0)) ∧ dof(Pl1) ∧ . . .

∧ dof(Pld)) | gtf(Pl0) ∧ . . . ∧ gtf(Pld)) =

1− Pr(((dof(Pl0) ∨ dou(Pl0)) ∧ dof(Pl1) ∧ . . .

∧ dof(Pld)) | gtf(Pl0) ∧ . . . ∧ gtf(Pld))

Now, Step 2.1 invokes the conditional independence rule in
Equation (21) and launches Step 3 with the events under the
probability in the equation above. Step 3.1 matches the events
to the conditional independence of pipeline detections (DO i)
given the ground-truth of pipeline presence (GT I ) as stated
in Equation (4) in the main paper.

Step 3.2 returns T to Step 2.1, and the rule in Equation (21)
splits the probability into a product of individual detector
events conditioned on the dof events of all detectors.
Next, Equation (20) removes the conditioning from these
probabilities by calling Step 3 and getting T due to Equation
(6) in the main paper. This reduces the expression to the
single-detector probability Pr:

1−
(
Pr(dof(Pl) ∨ dou(Pl) | gtf(Pl)

)
×

(Pr(dof(Pl) | gtf(Pl))d

Step 2.1 reintroduces the negation using Equation (17) and
replaces the dof events with in accordance with Equation (23):

1−
(
1− Pr(¬(¬dot(Pl) ∧ ¬ dou(Pl) ∨ dou(Pl)) |

gtf(Pl)
)
(1− Pr(¬(¬dot(Pl) ∧ ¬ dou(Pl)) | gtf(Pl))d

Now Step 2.1 uses the rule to put events into a CNF from
Equation (19):

1−
(
1− Pr(dot(Pl) | gtf(Pl)

)
×

(1− Pr(dot(Pl) ∨ dou(Pl) | gtf(Pl))d

Next, Step 2.1 uses the rule from Equation (18) to break up
the disjunction:

1−
(
1− Pr(dot(Pl) | gtf(Pl)

)
×

(1− Pr(dot(Pl) | gtf(Pl))− Pr(dou(Pl) | gtf(Pl))+

Pr(dot(Pl) ∧ dou(Pl) | gtf(Pl)))d

The probabilities Pr(dot(Pl) | gtf(Pl)) are equivalent to
fpr(Pl). Therefore, they are preferred and will not be affected
by matching transformations.

Next, Step 2.1 executes a replacement of dot with
the rule in Equation (22). This transforms Pr(dot(Pl) ∧
dou(Pl) | gtf(Pl) into Pr(¬dof(Pl) ∧ ¬dou(Pl) ∧
dou(Pl) | gtf(Pl), which is replaced by 0 because of the
contradiction: ¬dou∧dou(Pl) (which is processed automat-
ically by Mathematica). Step 2.1 finishes its rules with the
following formula:

1−
(
1− Pr(dot(Pl) | gtf(Pl)

)
×

(1− Pr(dot(Pl) | gtf(Pl))− Pr(dou(Pl) | gtf(Pl)))d

The above formula formula can be compactly rewritten into
the final formula:

fnr(Mpr) =1− (1− fpr(Pl))
(

1− fpr(Pl)−

Pr(dou(Pl) | gtf(Pl))
)d

(24)

FPR for Monitor of Reliable Following: Here we briefly
retrace Steps 1–3 of NCC/ECC for the FPR of monitor Mrf ,
which alarms iff the following property is violated:

Mrf = ¬¬¬¬s���� [0,d]Pl

The derivation of this FPR proceeds as follows. First, we
advance the negation according to the tautologies above:

♦♦♦♦ [0,d]¬¬¬¬sPl

Next, we write down the relevant events of the above
detector:

dot(Mrf ) = dof(Pl0) ∨ dof(Pl1) ∨ . . . ∨ dof(Pld)

gtf(Mrf ) = gtt(Pl0) ∧ . . . ∧ gtt(Pld)

Hence:

fpr(Mrf ) = Pr(dof(Pl0) ∨ dof(Pl1) ∨ . . . ∨ dof(Pld) |
gtt(Pl0) ∧ . . . ∧ gtt(Pld)) =

1− Pr(¬dof(Pl0) ∧ ¬ dof(Pl1) ∧ . . . ∧ ¬ dof(Pld) |
gtt(Pl0) ∧ . . . ∧ gtt(Pld))

Now, assuming the conditional independence of pipeline
detections (DO i) given the ground-truth of pipeline presence
(GT i) as stated in Equation (4) in the main paper, the above
expression simplifies to a final formula for Mrf :

fpr(Mrf ) = 1−
(

1− fnr(Pl) + Pr(dou(Pl) | gtt(Pl))
)d+1
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Figure 1: A UUV moves to the right above a pipeline. The
blue beam shows the obstacle detection sonar, and a plane
perpendicular to the figure shows the seafloor-facing scans of
the side-looking sonars.

J. Additional Figures for Evaluation

This section contains several auxiliary figures:
• Figure 1 shows a screenshot from our UUV simulator.
• Figure 2 shows the estimates of the FNR of Mpr for

different values of deadline d, based on our full dataset.
• Figure 3 shows the estimates of the FPR of Mrf for

different values of deadline d, based on our full dataset.
• As Figure 4 indicates for Mpr (d = 10), BBC converges

to the ground truth as the amount of information in the
dataset increases, whereas NCC converges as well, but in
a biased manner. The bias is, however, contained for all
d in a 95% Binomial confidence interval (CI) for ECC (a
vertical line; based on the maximum x-value), indicating
that it is likely to be an artifact of sampling randomness.
A similar convergence pattern occurs for the other values
of d with different convergence rates.

• Figure 5 is the same type as the previous figure, but for
FPR of Mrf . It shows similar yet unbiased convergence
of NCC and BBC to ECC for d = 10 (other values of d
repeat this pattern too).

• Figure 6 shows the same type of a plot as Figure 3 in
the main paper, but for the FPR of Mrf . Here, the x-axis
bin width is 400, and the minimum number of points per
bin is 38. We can see that the errors of NCC and BBC

• Figure 7 aggregates the information from plots like Fig-
ure 6 (and Figure 3 in the main paper) for all deadlines.
We plot for each d the RMSE across all samples with
varied information count. We observe that for larger

decrease rapidly (note the logarithmic scale) for more
data, and NCC errors are consistently smaller than those
of BBC. Further analysis showed this difference grows
with d, and the cross-over point shifts to the right.
deadlines, particularly in the case of Mpr, the average
error grows faster for BBC than for NCC.

• Figure 8 shows the dependency of the FPR estimates of
Mrf (NCC, BBC) on the various levels of stateful noise
(w). These estimates are made on our full dataset and for
d = 10.

Figure 2: Full-data estimates of the FNR of Mpr. BBC is less
accurate for d > 25.

Figure 3: Full-data estimates of the FPR of Mrf . The estimates
are indistinguishably close.
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Figure 4: Estimates of FNR of Mpr (d = 10) by information
count. The vertical ECC line is a 95% CI for max x-value.
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Figure 5: Estimates of FPR of Mrf (d = 10) by information
count. The vertical ECC line is a 95% CI for max x-value.
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Figure 6: Log-RMSE of FPR estimates for Mrf (d = 10) by
information count.
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Figure 7: RMSE of NCC and BBC for Mpr (high) and Mrf

(low), relative to the respective deadline d.

○ NCC

△ BBC

ECC for w = 0

0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

Noise weight (w)

F
P
R
o
f
m
o
n
it
o
r
M
rf

Figure 8: NCC and BBC for FPR of Mrf (d = 10) relative
to weight w. Baseline ECC is shown for w = 0, for context.
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