
Framework for Inter-Model Analysis of Cyber-Physical Systems 

Research Problem 

CPS engineering combines diverse modeling methods to 

capture various aspects of  the system, relying upon: 

 Structurally and semantically diverse system models.  

 Analyses — reasoning operations using models.   

 

Improper combination of  analyses from different models 

may lead to errors and, potentially, system failures.   

 

Hence the research questions: 

 How to detect inconsistencies between models?  

 How to compose analyses correctly? 

An architectural view for software and hardware models. 

Analysis Contracts 

Each analysis is assigned a contract — a set of  inputs, out-

puts, assumptions, and guarantees. Inputs and outputs are 

specified in terms of  the view analysis. Assumptions and 

guarantees are specified in FOL and LTL to verify cor-

rect analysis application.  

 

For example, frequency scaling contract assumes DMS:  

I = {threads, CPUs, CPUBind, Dline}, O = {CPUFreq}, 

A = { ∀t1, t2: threads| t1 ≠ t2 ∧ CPUBind(t1) = CPUBind(t2):  

G(CanPrmpt(t1, t2) ⇒ Dline(t1) ≤ Dline(t2)) }, G = {}. 

References 

 I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan. Contract-Based Integra-

tion of  Cyber-Physical Analyses. Appears in EMSOFT 2014.  

 A. Rajhans, A. Bhave, I. Ruchkin, B. Krogh, D. Garlan, A. Platzer, 

and B. Schmerl. Supporting Heterogeneity in Cyber-Physical Systems Archi-

tectures. Appears in IEEE Transactions on Automatic Control. 

Ivan Ruchkin, Dionisio De Niz, Sagar Chaki, David Garlan. Carnegie Mellon University, Pittsburgh, PA, USA.  

Inter-Model Analysis Framework 

The framework allows engineers to use views and analysis 

contracts to:  

 Verify model consistency through views.  

 Verify correct analysis composition. 

The first goal is achieved by specifying architectural con-

straints on views, appropriate to the context, and checking 

their satisfaction.  

To achieve the second goal, the framework determines a 

sound ordering of  analysis execution based on inputs and 

outputs. During the execution, the framework matches as-

sumptions and guarantees with verification models to deter-

mine their satisfaction. Currently, the framework supports 

SMT solving of  first order formulas and Spin verification of  

temporal contracts for thread scheduler and battery. 

Views for Models 

First, we create a common representation of  each mod-

el’s information that may concern other model. We use 

architectural views — sets of  components and connectors 

— to capture each model in architecture description lan-

guages: Acme and AADL. 

In some cases, such as a thread timing model, an archi-

tectural view is created from scratch. In others, e.g., hy-

brid programs, we employ annotations to capture the 

model components, connectors, and their properties. 

Example 

How can frequency scaling model determine the optimal 

CPU frequency, if  it affects thread scheduling and battery 

scheduling, potentially invalidating those models? 

Model: equivalent circuit. 

Model: threads & CPUs. 

Model: threads. 

Model: signal-flow graph. Model: lumped ODEs. 

The metamodel of  the framework. 


