
Framework for Inter-Model Analysis of Cyber-Physical Systems

Ivan Ruchkin

Designing a successful cyber-physical system (CPS) like an autonomous car 
requires tacking its cyber and physical aspects: control stability, planning, 
schedulability, protocol correctness, thermal safety, and energy efficiency, to 
name a few. Formalization of these aspects relies upon various domains of 
engineering expertise for appropriate system models and analytic operations on 
these models. For example, signal-flow graphs and simulation are appropriate to 
analyze a controller's stability, while state machines and reachability analysis can
be used to ensure protocol correctness. Thus, growing diversity of CPS 
applications involves new domains of expertise, which consequently bring in 
diverse models and analytic tools.

Any CPS engineering method faces the challenge of using multiple models and 
analyses together. First, proper model relationships are crucial to CPS design: 
missing important ones may create implicit inter-model conflicts, which cause 
failures, and considering too many relationships leads to low scalability and, 
ultimately, impracticality of rigorous design. For example, soundness of control 
modeling depends on network data exchange delays, but not necessarily on data 
structures. Second, analyses may deliver unsound results if their often-implicit 
assumptions are compromised. Such assumptions may concern complicated 
behaviors: for instance, the bin packing algorithm for thread-to-processor 
allocation is only applicable if the scheduling policy is equivalent to deadline-
monotonic. So, major research questions of multi-model CPS design are: what 
parts of models should be related to other models, and how to do so effectively? 
How to specify and verify assumptions of analyses for these models? And finally, 
given many possible ways to relate models, how to evaluate each of these ways, 
in particular its usefulness and overhead?

One obstacle to answering these questions is profound heterogeneity of models 
and analyses: their notions of computation, time, and state may be very different 
(cf., timed automata vs. signal-flow models). Another obstacle is that people with 
different background comprehend and create models differently: one model 
aspect may at the same time seem important to a software programmer, self-
evident to a control engineer, and irrelevant to a timing engineer. Yet another 
obstacle is that answers to the questions above are not universal: in some cases, 
battery lifetime analysis should take computing load and timing into account, 
while in other cases, when energy is abundant, this complexity is better avoided.

My research focuses on creating a CPS multi-modeling framework that facilitates
creating and maintaining model and analysis relationships. The framework's core
concepts are models, analyses, and architectural views. A model is a 
representation of a system part, expressed in a formalism specific to the model's 
domain of expertise. For example, a control model may be specified in Simulink, 
and a hardware model – in Verilog. An analysis is an operation that changes or 
uses models. The framework accepts specifications of analyses dependencies and



assumptions to ensure correct analysis application using existing models. An 
architectural view for a model is a typed graph of components and connectors 
that specifies the model's version of system's architecture. Thus, a relationship 
between models can be broken down into a relationship between each model and
its view and a relationship between views. The semantics of this relationship – 
refinement, composition, or some other – can be given flexibly in terms of the 
existing models. 

One research problem is the relationship between a model and its view. Direct 
transformation is not an acceptable solution: deep technical details in a model 
cannot be fully abstracted to a view – otherwise an analysis would not have 
enough information to be executable. Similarly, deriving a view fully from a 
model is not possible because models do not generally carry information about 
architectural types and patterns. My current research investigates usage of 
model annotations to maintain consistency between KeYmaera hybrid programs 
and their architectural descriptions. These annotations would promote program 
reuse and detect modeling mistakes such as using data about an obstacle that is 
not being sensed. However, the question of model-to-view relationships is open 
for other kinds of models.

Another research problem is specifying and verifying analysis assumptions. Some
assumptions cannot be satisfied by the model on which the analysis runs: for 
example, selecting a reconfigurable battery scheduler based on battery life 
simulations assumes that the scheduler does not trigger a chain heat reaction in 
battery cells known as thermal runaway. To discharge this assumption, I use a 
Promela model of a battery scheduler to explore possible cell interconnections 
and detect if connection patterns leading to thermal runaway are reached. The 
next step is creating a mechanism to match analysis assumptions to models that 
can discharge them. 

My future work includes developing a method for evaluating the engineering 
value of formal relationships between models. A hypothesis is that this value 
highly depends on how likely the engineers are to miss or misunderstand the 
relationship because of their expertise boundaries. I plan on using behavioral 
research methods like interviews and experiments to test and refine this 
hypothesis.

I would like to present my research during the plenary session. 


