
Contract-Based Integration of Cyber-Physical Analyses

Problem

CPS engineering combines diverse model-based analyses

from various engineering domains. Differences in do-

main abstractions lead to integration issues:

 If an assumption of an analysis are violated by anoth-

er, the outputs of the former may be invalid.

 Specification of such implicit assumptions and detec-

tion of their violation is left to human designers, who

are often unable to cope with complexity.

 Analysis integration problems discovered late in devel-

opment lead to expensive changes to the system.

Hence the research question:

 How to specify analysis compositions and verify their

correctness?

Analysis Contracts

Each analysis is assigned a contract — a tuple (I, O, A, G).

 Inputs I ⊆ ⋃ declare elements that the analysis

reads.

 Outputs O ⊆ ⋃ declare elements that the analysis

writes.

 Assumptions A ⊆ ℱσ are logical statements that must

be satisfied by every input model to the analysis: m ⊨A.

 Guarantees G ⊆ ℱσ are logical statements that must be

satisfied by every output model of the analysis: m ⊨ G.

Assumption and guarantee formulas have the following

syntax:

ℱσ ∷= ∀ v1...vj • φ | ∃ v1...vj • φ |

∀ v1...vj • φ : ψ | ∃ v1...vj • φ : ψ,

where φ is a predicate logic formula over ⋃ , ψ is an

LTL formula over ⋃ ⋃ ℛ. Experimental Results

Effectiveness: we have been able to detect analysis integra-

tion errors and verify their absence for each analysis in

the example.

Scalability: the results of scalability experiments with our

implementations of are shown in the tables below.

Ivan Ruchkin, Dionisio De Niz, Sagar Chaki, David Garlan. Carnegie Mellon University, Pittsburgh, PA, USA.

Analysis Ordering

Correct execution of analyses requires satisfaction of all

input-output dependencies for each analysis. Formally,

contract Ci depends on contract Cj if Ci.I ∩ Cj .O ≠ ∅.

Am ordering <C1...Cn> of contracts is sound if and only

if predecessors are not dependent on successors:

∀i ∈ [1, n] • ∀j ∈ [1, i) • Cj.I ∩ Ci .O = ∅.

Consider a graph with vertices being contracts and edges

being contract dependencies. There exists a sound order-

ing of contracts if and only if the graph is not cyclic. If

it is not cyclic, any topological ordering is sound.

Example System

Consider an autonomous aircraft as an example CPS. It

operates data with different classes of security, from

normal to top secret (ThSecCl). Periodic threads (T) ex-

ecute on several processors (C). The aircraft is powered

with multi-cell reconfigurable batteries (B). The system’s

architecture shown below is specified in AADL.

Example Analyses

G = { ∀t1, t2 • ThSecCl(t1) ≠ ThSecCl(t2) ⇒

t1 ∈ NotColoc(t2) }

(secure colocation permissions)

NotColoc ∈ T → 2T

(restrictions on thread colocation)

A = G = ∅ G = { ∀b • G (∑i=0..3 K(b, i)*TN(b, i)) }

(thermal safety)

A = { ∀t1, t2 • threads| t1 ≠ t2 ∧ CPUBind(t1) = CPUBind(t2):

G(CanPrmpt(t1, t2) ⇒ Dline(t1) ≤ Dline(t2)) }

(behavioral deadline-monotonicity)

Verification Domains

A verification domain σ = (, , ℛ, , ⟦⟧σ) formalizes

domain-specific constructs for several related analyses.

 — a set of sorts, comprised of system elements and

standard sorts. E.g., integers ℤ, threads T, or scheduling

policies SchedPol.

 — a set of static functions that encode design-time

properties. E.g., thread period Per, thread-to-CPU bind-

ing CPUBind, and system-wide Voltage.

 ℛ — a set of runtime functions that encode dynamic

properties. E.g., preemption relation canPrmpt(t1, t2)

and number of cells in a battery b with i thermal neigh-

bors TN(b, i).

 — execution semantics of σ — a set of sequences of

assignments to ℛ. We use Promela programs to imple-

ment the semantics.

 ⟦⟧σ — a domain interpretation of , , and .

E.g., ⟦SchedPol⟧σ = {RMS, DMS, EDF}.

Formally, an AADL architectural model m is an interpre-

tation ⟦⟧m of , , and . E.g., ⟦T ⟧m = { SensorSample,

Ctrl1, Ctrl2 }, ⟦CPUBind⟧m = { (Ctrl1, CPU1), (Ctrl2,

CPU2), …) }.

⟦⟧σ ⋃ ⟦⟧m form a full interpretation of , , ℛ, and .

A battery has a matrix of cells, and each cell has a cur-

rent level of charge. A battery scheduler determines par-

allel and sequential connections between groups of cells

in order to satisfy voltage and current output require-

ments.

Thermally, each cell exchanges heat with its neighboring

cells (thermal neighbors, TN) through an electrical connect-

or, affecting the risk of a thermal runaway.

G = { ∀t1, t2 • t1 ∈ NotColoc(t2) ⇒

 CPUBind(t1) ≠ CPUBind(t2) }

(secure thread allocation)

CPUBind ∈ T → C

(thread-to-CPU bindings)

CPUBind ∈ T → C

(thread-to-CPU bindings)

A = { ∀t • Per(t) = Dline(t),

∀t1, t2 • G(CanPrmpt(t1, t2) ⇒ G ¬ CanPrmpt(t2, t1)) }

(implicit deadlines, fixed-priority scheduling)

Voltage ∈ () → C

(system-wide voltage)

K ∈ B x ℤ → ℤ

(thermal coefficients)

Scheduling verification domain σsched

Battery verification domain σbatt

Contract Verification

The goal of contract verification is to decide m ⊨ ℱσ .

For purely first-order formulas that contain only φ, we

decide satisfiability via SMT solving. An SMT program is

generated based on and mentioned in φ, and an

SMT solver is invoked on ¬ φ (or φ for existential quan-

tification). A universally (existentially) quantified contract

is satisfied if and only if UNSAT (SAT) is returned.

For formulas combining predicate formula φ and LTL

formula ψ, we first generate an SMT program for φ and

find all valuations of v1...vj that satisfy φ. For each such

valuation we call Spin on a Promela program that imple-

ments for m in the domain of ψ. Formula ψ is trans-

formed into an LTL property specification in Promela. A

universally (existentially) quantified contract is satisfied if

and only if the LTL property holds for all (at least one)

valuations. The architecture of our verification tool is

shown below:

Threads (R/D)MS

time*

EDF time*

3 0.01 0.01

4 0.01 0.52

5 0.07 33.4

6 0.37 2290.0

7 2.18 memlim

8 12.4 memlim

9 71.2 memlim

10 421 memlim

11 memlim memlim

Cells FGURR

time*

FGWRR

time*

GPWRR

time*

9 0.13 0.15 0.15

12 0.61 2.34 3.94

16 44 31.4 127

20 1060 619 memlim

25 memlim memlim memlim

 batt: sched:

* All times are in seconds.

Copyright 2014 ACM. This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE

ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSI-

TY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-

CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLU-

SIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES

NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT. This material has been approved for public release and unlimited distribution. Carnegie

Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM-0001715.

Voltage ∈ () → C

(system-wide voltage)

