
Contract-Based Integration of Cyber-Physical Analyses 

Problem 

CPS engineering combines diverse model-based analyses 

from various engineering domains. Differences in do-

main abstractions lead to integration issues: 

 If  an assumption of  an analysis are violated by anoth-

er, the outputs of  the former may be invalid. 

 Specification of  such implicit assumptions and detec-

tion of  their violation is left to human designers, who 

are often unable to cope with complexity. 

 Analysis integration problems discovered late in devel-

opment lead to expensive changes to the system.  

 

Hence the research question: 

 How to specify analysis compositions and verify their 

correctness?  

Analysis Contracts 

Each analysis is assigned a contract — a tuple (I, O, A, G). 

 Inputs I ⊆   ⋃   declare elements that the analysis 

reads.  

 Outputs O ⊆   ⋃   declare elements that the analysis 

writes. 

 Assumptions A ⊆ ℱσ are logical statements that must 

be satisfied by every input model to the analysis: m ⊨A.  

 Guarantees G ⊆ ℱσ are logical statements that must be 

satisfied by every output model of  the analysis: m ⊨ G. 

 

Assumption and guarantee formulas have the following 

syntax:  

ℱσ  ∷=  ∀ v1...vj • φ | ∃ v1...vj • φ |  

∀ v1...vj • φ : ψ | ∃ v1...vj • φ : ψ, 

where φ is a predicate logic formula over   ⋃  , ψ is an 

LTL formula over   ⋃   ⋃ ℛ.  Experimental Results 

Effectiveness: we have been able to detect analysis integra-

tion errors and verify their absence for each analysis in 

the example. 

Scalability: the results of  scalability experiments with our  

implementations of    are shown in the tables below.  
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Analysis Ordering 

Correct execution of  analyses requires satisfaction of  all 

input-output dependencies for each analysis. Formally, 

contract Ci depends on contract Cj if  Ci.I ∩ Cj .O ≠ ∅. 

 

Am ordering <C1...Cn> of  contracts is sound if  and only 

if  predecessors are not dependent on successors:  

∀i ∈ [1, n] • ∀j ∈ [1, i) • Cj.I ∩ Ci .O = ∅. 

 

Consider a graph with vertices being contracts and edges 

being contract dependencies. There exists a sound order-

ing of  contracts if  and only if  the graph is not cyclic. If  

it is not cyclic, any topological ordering is sound.  

Example System 

Consider an autonomous aircraft as an example CPS. It 

operates data with different classes of  security, from 

normal to top secret (ThSecCl). Periodic threads (T) ex-

ecute on several processors (C ). The aircraft is powered 

with multi-cell reconfigurable batteries (B). The system’s 

architecture shown below is specified in AADL. 

Example Analyses 

G = { ∀t1, t2 • ThSecCl(t1) ≠ ThSecCl(t2) ⇒  

t1 ∈ NotColoc(t2) } 

(secure colocation permissions) 

NotColoc ∈ T → 2T 

(restrictions on thread colocation) 

A = G = ∅  G = { ∀b •  G (∑i=0..3 K(b, i)*TN(b, i) )  }  

(thermal safety) 

A = { ∀t1, t2 • threads| t1 ≠ t2 ∧ CPUBind(t1) = CPUBind(t2):  

G(CanPrmpt(t1, t2) ⇒ Dline(t1) ≤ Dline(t2)) } 

(behavioral deadline-monotonicity) 

Verification Domains 

A verification domain σ = (  ,  , ℛ,  , ⟦⟧σ ) formalizes 

domain-specific constructs for several related analyses.  

   — a set of  sorts, comprised of  system elements and 

standard sorts. E.g., integers ℤ, threads T, or scheduling 

policies SchedPol.  

   — a set of  static functions that encode design-time 

properties. E.g., thread period Per, thread-to-CPU bind-

ing CPUBind, and system-wide Voltage.   

 ℛ — a set of  runtime functions that encode dynamic 

properties. E.g., preemption relation canPrmpt(t1, t2) 

and number of  cells in a battery b with i thermal neigh-

bors TN(b, i). 

   — execution semantics of  σ — a set of  sequences of  

assignments to ℛ. We use Promela programs to imple-

ment the semantics.  

 ⟦⟧σ — a domain interpretation of   ,  , and  .  

E.g., ⟦SchedPol⟧σ = {RMS, DMS, EDF}.  

 

Formally, an AADL architectural model m is an interpre-

tation ⟦⟧m of   ,  , and  . E.g., ⟦T ⟧m = { SensorSample, 

Ctrl1, Ctrl2 }, ⟦CPUBind⟧m = { (Ctrl1, CPU1), (Ctrl2, 

CPU2), …) }.  

 

⟦⟧σ ⋃ ⟦⟧m form a full interpretation of   ,  , ℛ, and  . 

A battery has a matrix of  cells, and each cell has a cur-

rent level of  charge. A battery scheduler determines par-

allel and sequential connections between groups of  cells 

in order to satisfy voltage and current output require-

ments. 

 

Thermally, each cell exchanges heat with its neighboring 

cells (thermal neighbors, TN) through an electrical connect-

or, affecting the risk of  a thermal runaway. 

G = { ∀t1, t2 • t1 ∈ NotColoc(t2) ⇒ 

 CPUBind(t1) ≠ CPUBind(t2) } 

(secure thread allocation) 

CPUBind ∈ T → C 

(thread-to-CPU bindings) 

CPUBind ∈ T → C 

(thread-to-CPU bindings) 

A = { ∀t • Per(t) = Dline(t), 

∀t1, t2 •  G( CanPrmpt(t1, t2) ⇒ G ¬ CanPrmpt(t2, t1)) } 

(implicit deadlines, fixed-priority scheduling) 

Voltage ∈ ( ) → C 

(system-wide voltage) 

K ∈ B x ℤ → ℤ 

(thermal coefficients) 

Scheduling verification domain σsched 

Battery  verification domain σbatt 

Contract Verification 

The goal of  contract verification is to decide m ⊨ ℱσ . 

 

For purely first-order formulas that contain only φ, we 

decide satisfiability via SMT solving. An SMT program is 

generated based on   and   mentioned in φ, and an 

SMT solver is invoked on ¬ φ (or φ for existential quan-

tification). A universally (existentially) quantified contract 

is satisfied if  and only if  UNSAT (SAT) is returned.   

 

For formulas combining predicate formula φ and LTL 

formula ψ, we first generate an SMT program for φ and 

find all valuations of  v1...vj that satisfy φ. For each such 

valuation we call Spin on a Promela program that imple-

ments   for m in the domain of  ψ. Formula ψ is trans-

formed into an LTL property specification in Promela. A 

universally (existentially) quantified contract is satisfied if  

and only if  the LTL property holds for all (at least one) 

valuations. The architecture of  our verification tool is 

shown below:  

Threads (R/D)MS 

time* 

EDF time* 

3 0.01 0.01 

4 0.01 0.52 

5 0.07 33.4 

6 0.37 2290.0 

7 2.18 memlim 

8 12.4 memlim 

9 71.2 memlim 

10 421 memlim 

11 memlim memlim 

Cells FGURR 

time* 

FGWRR 

time* 

GPWRR 

time* 

9 0.13 0.15 0.15 

12 0.61 2.34 3.94 

16 44 31.4 127 

20 1060 619 memlim 

25 memlim memlim memlim 

  batt:   sched: 

* All times are in seconds. 
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Voltage ∈ ( ) → C 

(system-wide voltage) 


