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Abstract—Self-adaptive software systems rely on planning to
make adaptation decisions autonomously. Planning is required
to produce high-quality adaptation plans in a timely manner;
however, quality and timeliness of planning are conflicting in
nature. This conflict can be reconciled with hybrid planning,
which can combine reactive planning (to quickly provide an
emergency response) with deliberative planning that take time
but determine a higher-quality plan. While often effective, reac-
tive planning sometimes risks making the situation worse. Hence,
a challenge in hybrid planning is to decide whether to invoke
reactive planning until the deliberative planning is ready with a
high-quality plan. To make this decision, this paper proposes a
novel learning-based approach. We demonstrate that this learning-
based approach outperforms existing techniques that are based
on specifying fixed conditions to invoke reactive planning in two
domains: enterprise cloud systems and unmanned aerial vehicles.

Index Terms—automated planning; machine learning; proba-
bilistic model checking

I. INTRODUCTION

Modern enterprise software systems have to provide high

availability and optimal performance in spite of changing

environments, faults, and attacks. Managing these systems

manually can be costly, error prone, and difficult to scale;

therefore, these systems are becoming increasingly autonomous.

For autonomous systems, the ability to plan is one of the key

requirements to decide how to adapt. To this end, researchers

have proposed various planning techniques, including rule-

based adaptation, case-based reasoning, fuzzy-logic, reinforce-

ment learning, stochastic search (using genetic algorithms), and

optimization on probabilistic models (e.g., Markov Decision

Processes (MDPs)). We use the term "planning" in a broad

sense, referring to any decision-making approach that could

be used to determine adaptation plans. The goal of planning

is to solve planning problems — descriptions of a planning

context (a system and its environment) and a goal (a state or

an objective function) for planning purposes.
For many autonomous systems, quality and timeliness are

two particularly important requirements to be considered

when planning. Here the “quality” of planning refers to the

likelihood of a plan meeting the (predefined) adaptation goals.

In many domains, a poor quality plan can lead the system

into an irreparable failure that endangers lives (e.g., in safety

critical systems), or loss of revenue and failure of business

goals (e.g., enterprise systems). A high quality plan needs to

be ready in time to achieve its adaptation goals. For instance,

if an enterprise system fails to produce a timely defense plan

in response to an attack trying to extract sensitive data, the

system risks being compromised even if the plan itself was

high quality (e.g., because assets may have been exfiltrated

while the plan was being constructed) [1].
Fundamentally, quality and timeliness are conflicting require-

ments: producing higher-quality plans is likely to take more

time. Furthermore, the time to produce quality plans increases

significantly in larger search spaces resulting from complex

environments, large numbers of components, adaptation options,

and qualities of interest. To address this quality-timeliness trade-

off, one approach, referred to as hybrid planning, combines

multiple planning components with different quality-time

tradeoffs [2]. When a time-critical adaptation is needed, “fast”

(reactive) planning determines a quick (but potentially sub-

optimal) plan, while “slow” (deliberative) planning computes

a better plan that takes over once it is ready.
A key obstacle to the adoption of hybrid planning is deciding

when to invoke reactive planning. It may be a high-stakes

decision: waiting may lead to system failure, whereas reactive

planning may make a quick but bad decision that makes the

situation worse – not better – and may lead to failure as well.
To avoid an inappropriate invocation of reactive planning,

one might specify up-front conditions under which it should be

invoked. For example, Netflix used reactive planning only in

emergency situations when waiting for a deliberative plan

is not advisable (e.g., unexpected surge in workload) [3].

This approach might reduce the risks of inappropriate quick

decisions, but suffers from two drawbacks: (a) it requires

deep domain expertise to identify the conditions; and (b) it

relies on error-prone human judgment to identify the right and

comprehensive conditions, which can be difficult for a complex

system with multiple conflicting requirements. For instance,

such rules may be conservative and avoid reactive planning

when they might, in fact, be useful.
To overcome these drawbacks, as the first contribution,

this paper proposes a supervised machine learning-based
(LB) approach to decide whether to invoke reactive planning

in combination with deliberative planning or wait (i.e., no

adaptation) until a deliberative plan is ready. In the training

phase, using planning problems similar to the ones expected

at run time, a classifier is trained to choose between invoking

reactive planning and waiting. At run time, depending on how

the current situation (i.e., the planning problem at hand) relates

to problems in the training set, the classifier decides whether to

invoke reactive planning or wait. As we will see, this approach
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overcomes disadvantages of condition-based (CB) invocation

of reactive planning by removing the need for humans to

determine the specific conditions at design time, and by being

applicable to a broad range of systems/domains.
To train a classifier, one needs a set of labeled training

problems such that the label of a problem indicates whether

reactive planning, in combination with deliberative planning

will provide a higher performance compared to just waiting

until a deliberative plan is ready. Labeling a planning problem

requires one to evaluate and compare the performance of (a)

the reactive plan (determined by reactive planning for the

problem) followed by the deliberative plan, and (b) waiting

followed by the deliberative plan.
Obtaining correctly labelled training data for a classifier is

challenging for real systems. To label one planning problem,

one would have to repeatedly put the system and its envi-

ronment in the same state to test the two combinations as

mentioned above. This is non-trivial, particularly in domains

with uncertain dynamics, which is often the case in modern

systems. In such domains, the environment evolution and

the outcomes of the system’s actions may change between

attempts, so one would have to perform multiple trials of

the same combination to determine the best average outcome.

For example, suppose a self-adaptive cloud-based system

proactively adds a server, anticipating an increase in future

workload. However, if the workload suddenly decreases, adding

the server is counterproductive. For such a system, an approach

is needed that can take uncertainty (e.g., possible changes in

workload) into account, preferably, in a single run (to save

time/effort) when evaluating a combination.
To this end, as the second contribution, we employ proba-

bilistic model checking to estimate the performance of reactive

planning and waiting in combination with deliberative planning

over all possible execution paths in a planning problem with a

single run of a model checker. For the estimation, we encode a

combination and the problem in a probabilistic model checker

specification and use it to calculate the expected performance

of the combination. By comparing the performance of the two

combinations, one can choose the best combination for the prob-

lem and label it with “use reactive” or “wait”. The probabilistic

nature of model checking helps to account for uncertainty when

evaluating a combination of reactive and deliberative planning.

We expect existing probabilistic model checkers to ease

adoption, automation, and reuse of the learning-based approach.
The paper validates the learning-based (LB) approach (and

implicitly the labeling process) using simulations of two realis-

tic systems: a cloud-based self-adaptive system [4] and a team

of unmanned aerial vehicles [5]; as detailed later, these systems

differ in their ability to recover from poor/delayed actions.

In addition, the systems use a different set of reactive and

deliberative approaches to instantiate hybrid planning. In both

cases, we compared the performance of the LB approach against

condition-based approach and found that, on average, the former

is preferable to the latter. The better performance of the LB ap-

proach also indicates that model checking was able to appropri-

ately label sample problems. Moreover, an empirical analysis of

the data revealed that the performance of hybrid planning is cor-

related to the performance of (i) deliberative planning, and (ii)

the relatively better-performing approaches amongst the reactive

ones. The details to replicate the evaluation process are provided
in the supplementary material [6]. These findings can inform

engineers who need to prioritize their investment of resources

in planners, instead of exploring many possible combinations.

II. BACKGROUND AND RELATED WORK

For many self-adaptive systems, using a single (i.e.,

either a reactive or a deliberative) planning approach can

be problematic [7]. Hybrid planning (HP) seems to be a

promising way to balance quality and timeliness of planning.

However, our formal analysis of hybrid planning [8] highlights

two fundamental challenges:
PLANNING COORDINATION (PLNCRD): Hybrid planning

requires a smooth transition from a reactive plan to a possibly

higher-quality deliberative plan. Suppose a system observes an

emergency situation, and, as a result, invokes reactive planning

to provide a quick response. For a seamless transition from

a reactive plan to a deliberative plan, two conditions need to

be met [2]: (1) timing – the deliberative plan should be ready

at the moment of transition; and (2) preemption – that the

deliberative plan should contain state of the system at the point

of the transition. Satisfying these two conditions is challenging

for two reasons: (a) uncertainty about deliberative planning time

makes it difficult to predict when the deliberative plan will be

ready, and (b) uncertainty in the system’s environment makes it

difficult to predict the expected system and environment state

after executing the reactive plan.
PLANNING SELECTION (PLNSEL): Assume that deliberative

planning provides better plans compared to reactive planning.

Formally, given set Ξ of all planning problems for a system

and set F of reactive planning approaches, solving the PLNSEL

problem means approximating function G ∶ Ξ→ F suggesting

which reactive approach should be invoked for a planning

problem ξ ∈ Ξ.1 Set F has a special element (i.e., ρwait) that,

for any planning problem, always suggests to wait until the

deliberative plan is ready; therefore, using ρwait in combination

with deliberative planning is equivalent to using deliberative

planning alone. ρwait is required to ensure that hybrid planning

does not underperform deliberative planning in cases when

none of the other reactive approaches (in F) provide a better

plan than just waiting for the deliberative plan to be ready;

as supported by our evaluation results (cf., Section V-C), in

certain situations, it is prudent to just wait. This paper focuses

on choosing between a reactive approach and waiting until

a deliberative plan is ready, therefore set F has only two

elements: the reactive approach and ρwait.
To solve PLNCRD, we adopt the approach suggested in prior

work [9]. The approach has two distinguishing characteristics:

(a) deliberative planning generates a high-quality universal

plan/policy (one containing state-action pairs for all the

reachable states from the initial state), where a mapping from

a state (say s) to an action (say a) suggests a be executed in

1The choice of using deliberative planning followed by reactive planning is
not considered since if a deliberative plan is ready to take over, it will provide
a higher utility compared to a plan determined by reactive planning.

56

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 15,2021 at 20:51:38 UTC from IEEE Xplore.  Restrictions apply. 



s; and (b) the operating domain is assumed to be Markovian:
the state after a transition depends only on the current state

— not on the sequence of states that preceded it. These two

characteristics increase the chances of successful preemption

if reactive and deliberative planning use the same initial

state. That is, once the deliberative plan is ready, it can take

over plan execution from the reactive plan because any state

resulting from executing the reactive plan will be found in the

deliberative plan. However, in reality, there is still a possibility

that transition between the plans might fail due to violating

the timing or preemption condition, thus affecting the quality

of adaptation (for more details, see Section V).

To solve PLNSEL, which is the focus of this paper,

Mausam et al. [10] proposed to always use reactive planning

and, if required, revise the plan using a more deliberative

planning approach. They assume that reactive planning will

always improve the current situation. This assumption worked

because their hybrid planning instantiation is limited to either

a specific combination of planners or a particular domain.

However, this assumption might not always hold since, as

the formalism of hybrid planning suggests, it depends on the

quality of a reactive planner and the nature of an operating

domain [2]. Our proposed learning-based (LB) based approach

can be applied to different domains and different combinations

of planners as demonstrated in Section V.

Researchers have proposed various condition-based (CB)

approaches. For instance, Pandey et al. [9], and Ali-

Eldin et al. [11] proposed hybrid controllers in the context

of self-adaptive cloud systems; these instantiations of hybrid

planning use threshold-based rules to invoke reactive planning.

Bauer et al. [7] extended this idea with more sophisticated

conditions. While CB approaches have shown to be effective,

as noted earlier identifying these conditions at design time can

be difficult, particularly, for complex systems having multiple

interacting dimensions of concern (e.g., cost, performance,

security). We overcome these drawbacks with the LB approach.

III. LEARNING-BASED PLANNING SELECTION

This section introduces a novel approach to PLNSEL –

deciding which reactive approach to invoke for a given problem.

Our approach has two phases: offline and online. During the

offline phase, the first step is to collect/identify a training set

of planning problems similar to the ones expected at run time.

In the second offline step, using a probabilistic model checker,

these problems are labelled with the preferred reactive approach

to provide an instantaneous response. The third and last offline

step is to decide appropriate features in the training set and use

them to train a machine learning classifier, which will determine

the best reactive planner at each moment. In the online phase,

when facing a planning problem ξ (representing the current

situation) at run time, the system invokes the classifier on the

features of ξ. The classifier picks a reactive planner, which is

used by the system until a deliberative plan is ready.

1) The offline phase: In the offline phase, a classifier is

built on planning problems that the system expects to observe

at run time. The three offline steps are (a) identify sample

planning problems to profile the hybrid planner; (b) profile

the hybrid planner on these problems to know the label (i.e.,

which reactive approach is likely to outperform others); and (c)

select features and hyper-parameter values to train a classifier.
(1a) Identifying Sample Problems: To select reactive

planners effectively, it is crucial to cover the planning

problem space comprehensively. However, identifying a set

of representative problems is challenging due to a potentially

infinite problem space and its unknown structure. No single

selection strategy fits all systems and domains, and we

suggest tailoring the sample set to the system’s context and

requirements. Fortunately, modern systems produce large

amounts of data that are available to train a classifier. For

instance, in our evaluation systems, we mine sample planning

problems from the available traces containing the typical

system load patterns [12] (for the cloud-based system) and

randomly sample the space of missions (for the UAV domain).
(1b) Labeling the Sample Problems: This step determines

the reactive approach ρir ∈ F that performs best in combination

with deliberative planning for a sample planning problem ξ,
and labels it accordingly (i.e., ρir). At the end of this step,

we obtain a set of labelled training data, which is critical to

(supervised) learning in our LB approach. However, in the

presence of environment uncertainty (which is often the case

for realistic systems), it is difficult to evaluate a combination

given that its performance may vary across plan executions

(for the same problem) because of different possible outcomes

leading to different plan execution paths. For example, suppose

a self-adaptive cloud-based system proactively adds a server

anticipating an increase in the future workload (i.e., the number

of requests received by clients). However, if the workload

increases or decreases further, adding the server might not have

the desired effect. Therefore, an approach is needed that can

take uncertainty into account when evaluating the combination.
To overcome this problem, we propose using probabilistic

model checking, which considers stochastic uncertainty when

evaluating a combination of reactive and deliberative plans.

By constructing a model for a model checker, one can encode

the combined execution of a reactive plan followed by the

deliberative plan (produced by the respective approaches) for

some planning problem; the model checker returns expected

utility of this execution. Given a planning problem, a finite

set of reactive approaches, and a deliberative approach, this

process is repeated for each reactive approach to evaluate

its combination with the deliberative approach for the

problem. Model checking helps label training problems by

evaluating plan combinations under probabilistic uncertainty,

by considering all possible execution paths weighted by their

probabilities. Here, we assume that different conflicting quality

attributes for a self-adaptive system can be represented as a

multi-dimensional utility function such as Equations 1 and 2 in

Section IV, and that the planning goal is to maximize expected

utility. In other words, the quality of a (combined) plan can

be assessed based on the utility it is expected to provide.
Figure 1 shows how a model checker can be used to evaluate

the combination of reactive (ρir, producing plans πi
r) and

deliberative (ρd, producing plan πd in time td) planning. The

outcomes of executing actions from each plan are uncertain,
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Figure 1: Evaluating reactive approach ρir by calculating the

utility for a reactive plan followed by a deliberative plan.

and a model checker handles this uncertainty by aggregating

the quality of possible outcomes as expected utility, denoted

U i
r. Since planning time td is difficult to predict upfront, and

not guaranteed to remain fixed for different sample problems

(or even the same one in different runs), in practice, one can

configure the worst-case planning time (td) chosen as an over-

approximation after a large number of trial runs for sample

problems as we did in our experiments (cf., Section V-B).

To compute U i
r for ξ, the model checker calculates the

expected utility for the combination of plans πi
r (until time

step td) and then πd. If set F has N reactive planners, then

each sample problem ξ requires N evaluations corresponding to

each ρr ∈ F . For probabilistic model-checking, our evaluation

uses PRISM [13]; it can model check MDP-based planning

problems, which is the case for the two evaluation systems

(cf., Section IV). However, our approach is not limited to any

specific model checker.

Finally, we need to compare expected utilities for each

combination. For problem ξ, suppose the plan determined by

ρ′r ∈ F (in combination with the deliberative plan) provides

the highest utility, ξ is assigned the label corresponding to ρ′r.
In cases where more than one reactive approach provides the

highest utility, any one approach can be chosen. Thus, each

sample problem is labeled with one of the N labels, given N
reactive approaches. This approach can be naturally extended

to also support any number of deliberative approaches (rather

than one); basically, the labeling process can help in deciding

the best pair of reactive and deliberative approaches.

(1c) Training a Classifier: The first step to train a classifier

on the labeled problems is to identify relevant features of

planning problems that help separate the N classes. We use two

complementary sets of features: ones representing the current

state of the system, and ones describing how the system will

evolve in the future. As an example, for a cloud-based system,

state variables such as the number of active servers can be used

to capture the current state. To capture future evolution, one

can use real-time predicted request arrival rates for the future

within the planning horizon [14]. These features reasonably

capture a planning problem, which has current (i.e., initial)

state and transitions as the fundamental elements. Once features

are identified, we use cross-validation on the sample problems

to train and test different classifiers; we pick the classifier that

provides the best performance during cross-validation.
2) The online phase: When a self-adaptive system requires

planning (e.g., periodically or in response to a fault), it

formulates a planning problem ξ. The offline-trained classifier

is used on ξ to assign the label corresponding to an appropriate

ρr ∈ F . It is necessary that the classifier is near-instantaneous —

otherwise the classification delay makes the profiling scenario

too dissimilar from the online scenario.
The proposed LB approach overcomes the limits of relying

on predefined conditions to choose among reactive approaches.

Now, domain expertise is not necessary to decide which

reactive approach needs to be invoked. Instead, engineers can

rely on planning problems encountered in the past to answer

the same question, without committing to specific up-front

conditions. Moreover, full/partial automation is possible for the

LB approach, which can relieve designers from the painstaking

and error-prone process of identifying the conditions.

IV. SYSTEMS FOR EVALUATION

Section V evaluates the LB approach and, implicitly, the

labeling process using model checking. The key question

investigated in the evaluation is, “how effective is the LB
approach compared to the CB?” Effectiveness is a measure

of a system’s ability to meet its adaptation goal, which is

encoded in a multidimensional utility function as presented

later in Formulas 1 and 2. To compare the approaches,

we conducted controlled experiments by keeping all the
experimental parameters constant except the planning approach

(LB, CB, . . . ) and the traces (cf., Section IV-A) or missions

(cf., Section IV-B) used as inputs for the two systems. We

controlled the parameter values to isolate the effects of the

planning approach (independent categorical variable) on the

utility (dependent ordinal variable).
This evaluation is done using two different systems: a

cloud-based load balancing system and a team of UAVs

on a reconnaissance mission; the differences are discussed

in Section VI. These systems are used because balancing

timeliness and quality of planning is critical to their success,

and developing a single planning approach from scratch

can be challenging. The systems let us investigate different

compositions of constituent planners, which vary in their action

sets, planning horizons, and treatment of uncertainty.

A. The Cloud-based Load Balancing System
As the first system, we adopted a cloud-based load balancing

system that we used to evaluate CB hybrid planning in our

previous work [9]. We hope that in the future, cloud-based

systems will facilitate comparisons among potential solutions to

PLNSEL since they have become a de facto benchmark for re-

searchers in the self-adaptive community [15]. As an implemen-

tation of a cloud-based system, we used SWIM, which is a well

accepted artifact in self-adaptive research community [4]. The

system is hosted on a heterogeneous set of servers of varying

capacity and per-minute usage cost, which increases with the

capacity. The request arrival rate varies in an uncertain manner,

leading to variance in the system’s workload. The goal of self-

adaptation is to optimize profitability by maximizing revenue

58

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 15,2021 at 20:51:38 UTC from IEEE Xplore.  Restrictions apply. 



(dependent on the number of processed requests) and minimiz-

ing operating cost (dependent on the server usage) using various

adaptation tactics. To maximize revenue, it is desirable to main-

tain the response time for user requests below a certain thresh-

old (T ), since higher response times lead to revenue loss. To re-

duce the response time caused by increased arrival rate, the sys-

tem can add more servers (using tactic addServer<type>)
and pay their costs. To reduce costs, the system can deactivate

servers with an adaptation tactic removeServer<type>.
Another way to control response time is by reducing the

amount of optional content (e.g., advertisements or product

recommendations) that is provided in each response — some-

times called brownout. The optional content can increase

revenue, but requires more bandwidth for each request, thus

increasing response time. Tactics increaseDimmer and

decreaseDimmer can control brownout by, respectively,

raising or lowering the probability that a request will be served

with optional content. Higher dimmer values lead to higher

proportions of requests served with optional content.
To summarize, the system needs to maximize revenue, keep

response time below the threshold to avoid penalties, and

minimize the number of active servers to reduce cost. These

objectives are captured in a multidimensional utility function

shown in Formula 1. The adaptation goal of the system is

to maximize the utility calculated using this formula. If the

system runs for duration L, its utility function is defined as:

U = ROxO +RMxM − PxT −
n

∑
i=1

Ci ∫
L

0
si(t)dt, (1)

where RO and RM is revenue generated by a response

with optional and mandatory content respectively; xO, xM ,

and xT are the number of requests with optional content,

only mandatory content, and having response time above the

threshold; Ci is cost of server type i, and si is number of active

servers of type i; n is number of different types of servers.
Both the timeliness and quality of planning is needed to

maximize utility for this system. A timely (i.e, quick) response

is needed to minimize penalty P in case of the response time

constraint violation. Simultaneously, a quality plan is needed

for the long term utility gains by considering factors such as

the current state of the system and its environment, predicted

values of request arrival rate, and timing of tactic latency [14].
To construct a realistic environment of users accessing

the cloud-based system, we used a research dataset with

online traffic common in web analytics — the daily traces

of user requests from the FIFA WorldCup website [16]. Each

day’s trace contains time stamps representing inter-arrival time

between two client requests, abstracting away the details of

user requests to focus on their frequency. We picked these

traces because they contain the patterns for high-demand cloud

systems as classified by Ghandhi et al. [12]. Moreover, this trace

set is considered as a benchmark for traffic in web analytics [7],

[17]. We mined training data and performed experiments on 87

traces (out of 92), ignoring 5 empty/partial ones; the illustrating

plots are available in the supplementary material [6].
For hybrid planning, we use one reactive deterministic

planning approach (ρdet) in addition to waiting (ρwait), i.e.,

Action Description Survival/Detection Chance

IncAlt Climb one altitude level increases/decreases
DecAlt Descend one altitude level decreases/increases
IncAlt2 Climb two altitude levels increases/decreases
DecAlt2 Descend two altitude levels decreases/increases
GoTight Change to tight formation increases/decreases
GoLoose Change to loose formation decreases/increases
EcmOn Turn ECM on increases/decreases
EcmOff Turn ECM off decreases/increases

TABLE I. Adaptation actions for the UAV team.

F = {ρdet, ρwait}, along with deliberative planning (ρmdp) —

as discussed in Section II. The uncertainty in request arrival

rate is ignored by ρdet by assuming it to be constant at the

current value. This reduction in the search space greatly reduces

the planning time for ρdet, making it practically instantaneous

in the context of the this system. When using the CB approach,

ρdet is invoked when response time is above the threshold;

therefore, the intent behind using ρdet is to avoid penalty P . In

contrast to ρdet, ρmdp considers predicted (but uncertain) values

of the request arrival rates. We use a time-series predictor to an-

ticipate the future workload on the system, similar to others [14].

The goal of both reactive and deliberative planning is to maxi-

mize utility (Formula 1) for their look-ahead horizon (parameter

values described in Section V-B). In addition to labeling sample

planning problems (Section III), we use PRISM both as a deter-

ministic and MDP planner as we did in our previous work [9].

B. A Team of Unmanned Aerial Vehicles

As the second evaluation system, we used a simulated team

of unmanned aerial vehicles (UAVs) performing a reconnais-

sance mission in a hostile environment; as an implementation

of a team of UAVs, we used DARTSim [5]. The predefined

route of the team is a straight line, divided into equal segments

of fixed length. Each segment can have threats and detection

targets depending on how they are randomly placed in the route.

The locations of targets and threats depends on a random seed,

which is an input parameter to DARTSim. The mission of the

team is to maximize the number of targets detected and avoid

being shot down by the threats, which would lead to the mission

failure (no more targets can be detected further). However, it

is difficult to meet the two requirements simultaneously since

there is no action available that increases the chances of both

target detection and survival for the team (see Table I). If the

team chooses to execute an action, then all of its UAVs in the

team execute the same action.

The team has different sensors to detect targets and threats as

it flies a route at constant speed. For each route segment within

the range, the sensor reports whether it detects a target or threat,

depending on the sensor type. However, due to sensing errors,

these reports may include false positives and false negatives. An

adaptation manager can get multiple observations to construct

a probability distribution of threat or target presence in a cell.

A threat can destroy the team only if both are in the same

segment. However, a threat has range rT , and its effectiveness

is inversely proportional to the altitude of the team, denoted

by A. In addition, the formation of the team affects the

probability of it being destroyed. The team can be in two
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different formations: loose (φ = 0), and tight (φ = 1). The latter

reduces the probability of being destroyed by a factor of ψ.
When the team uses (E = 1) electronic countermeasures (ECM),

the probability of being destroyed is reduced by a factor of

α. The probability of detecting a target with the downward-

looking sensor, given that the target is in the segment being

traversed by the UAVs, is inversely proportional to the altitude

of the team [5]. Furthermore, flying in tight formation reduces

the detection probability due to sensor occlusion or overlap,

and the use of ECM also affects target detection, reducing the

probability of detection by a factor of β. The probability of

the team being destroyed d and detecting a target g depends

on factors such as altitude, formation, and the use of ECM as

formulated by Moreno et al. [5].

Given constants μ and λ, and the number of segments

survived and target detected for a mission is S and T
respectively, the utility of the mission is calculated as

U = μS + λT. (2)

Both the timeliness and quality of planning are needed to

maximize utility for this system. A timely (i.e, quick) response

is needed in response to threats, which could lead to mission

failure. Simultaneously, a quality plan is needed for the long

term utility gains that requires not only surviving but also

detecting targets; this requires considering factors such as

uncertainty in the threat and target locations.

To instantiate hybrid planning here, we use waiting(ρwait)

and short-horizon planning (ρsrt) as the reactive approaches

(so, F = {ρsrt, ρwait}), along with long-horizon deliberative

planning (ρlng). Both ρsrt and ρlng use MDP planning over

similar models but with different planning horizons. Moreover,

when planning, ρsrt does not consider adaptation actions

IncAlt, DecAlt, and EcmOn, and EcmOff; although less

precise, the effect of these actions on survival/detection chances

can also be achieved by the actions considered by ρsrt. For
instance, by using actions IncAlt2 and DecAlt2, ρsrt can

plan to increase/decrease two altitudes levels in response to

a threat or an opportunity to detect a target. Using a shorter

horizon in combination with a subset of actions results in a

smaller state space in ρsrt compared to ρlng . The goal for both

reactive and deliberative planning is to detect targets on the

ground and avoid being shot down by threats. When using a

CB approach, this instantiation invokes ρsrt if A < rT i.e., the

team is in the threats’ range, else ρwait is used; therefore, ρsrt
is used to provide a quick response when the team is in danger.

V. EVALUATION

To compare the effectiveness of learning-based (LB) and

condition-based (CB) approaches we proceeded as follows:

We used the two systems as discussed in Section IV. Then

we collected sample planning problems, labeled them with a

model checker, and trained a classifier for the LB approach

(Section V-A). To compare the performances, we conducted

experiments in different planning modes (Section V-B) – our

findings are presented in Section V-C.

A. Learning-based Approach Implementation
This section explains the implementation of the LB approach.

1) The Offline Phase: As explained in Section III-1, the

offline phase involves three steps: identifying sample problems,

labeling the sample problems, and training a classifier.
(1a) Identifying Sample Problems: To generate sample

problems for the two systems, our goal was to create a set

of problems similar to the ones expected at run time. For

the cloud-based system, we executed each trace in a mode

where ρdet was always invoked in combination with ρmdp.

This mode is different from using a learned classifier since

the later switches between ρdet and ρwait depending on a

planning problem. Therefore, the training data is less likely

to include the exact problems that the system would observe

at run time, thus providing us with data similar to what can

often be mined from system execution logs. We generated 1651

planning problems from 87 traces. For the UAVs, we simulated

630 missions (using 630 different seeds) in the mode similar to

the cloud-based system i.e., always invoke ρsrt in combination

with ρlng . In total, 16822 planning problems were generated.
(1b) Labeling the Sample Problems: Since in both the

systems set F has two elements, the offline phase of the LB

approach labels each sample problem (say, ξ) with one of three

classes (i.e., UseReactive, UseWait, or UseEither). Suppose the

expected utility (after model checking) for the combination

ρdet/ρsrt (depending on the system) and deliberative planning is

UR, and for the combination of ρwait and deliberative planning

is Uw. If Ur > Uw, then the problem is labeled to invoke

the reactive planning (i.e., CLASSIFY(ξ) = UseReactive); if

Ur < Uw, then the problem is labeled to wait for the deliberative

plan to be ready (i.e., CLASSIFY(ξ) = UseWait). Finally, if

Ur = Uw, then the choice between reacting and waiting does

not matter (i.e., CLASSIFY(ξ) = UseEither). One can also

include a small margin (δ such that Ur > Uw +δ, or vice versa)

when comparing Ur and Uw. For the cloud-based system, 111,

253, and 1287 problems were labeled as UseWait, UseReactive,
and UseEither, respectively. The UAV team had 358, 8391,

and 8073 problems labeled as UseWait, UseReactive, and

UseEither, respectively. For the two systems, the significant

number of UseEither labels indicate that for large parts of state

space wait and non-wait reactive planners agreed on the action.
(1c) Training a Classifier: Next we choose and train a

classifier by separating train/test data via cross-validation. In

the cloud system we used leave-one-out cross-validation. First,

we left out a test trace (iterating through all 87 traces) on which

the LB approach would later be evaluated. On the problems

from the remaining 86, we trained via 10-fold cross-validation.

Classifier performances are then averaged over all validation

folds, and the best one is picked for evaluation on the test

trace (i.e., the one not used for training). Similarly for the UAV

team, we used 630 mission seeds for 10-fold cross-validation.

The best classifier is evaluated as part of the LB approach on a

different 70 missions. For the systems, each fold had the same

proportion of classes as the whole dataset.
To find the “best” classifier in cross-validation, we used

recall, precision, and F1 score based on dataset characteristics.

For both the systems, it was challenging to discover situations

when ρwait is the best choice because the data is skewed against

UseWait. Thus, we maximized the recall value for UseWait.
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For this criterion, an ensemble classifier known as extremely
randomized trees achieved the best performance in the both

systems. For the cloud, this classifier had recall/precision

for UseWait above 0.8, and above 0.9 for UseReactive and

UseEither. For UAVs, the best UseWait recall was 0.70, and

precision — 0.72. Both recall and precision for UseReactive
and UseEither were between 0.8 and 0.85.

2) The Online Phase: Both the systems periodically evaluate

if adaptation is needed: When the systems observe a problem

(ξ) at run time, they execute the hybrid planning algorithm
we developed in [9]; the algorithm is formalized in the

supplement [6], and we summarize it here. To find a plan

for ξ, the algorithm first refers to the previous deliberative plan.

If this plan exists and contains the current state, it is applied

to the ξ — otherwise, a new deliberative plan is computed. In

the meantime, the algorithm needs to decide its instantaneous

response, which requires choosing a reactive planner ρr ∈ F
(i.e., either invoke ρdet/ρsrt or ρwait) until the deliberative

plan is ready. Regardless of the above decision, deliberative

planning is started simultaneously in order to eventually arrive

at a plan that is expected to yield higher utility than any reactive

approach. As discussed earlier, the structure of the plan enables

a smooth transition from a reactive to a deliberative plan, thus

taking care of PLNCRD. In the algorithm, the logic to pick an

appropriate reactive approach can be implemented by checking

predefined conditions (i.e., CB) on ξ, or by learning (i.e., LB)

which reactive approach is most suitable.

In the LB approach, the offline-trained classifier is used on

ξ to assign it to one of the three classes discussed above in

Section V-A1. If the returned class is UseWait or UseReactive,
the system invokes ρwait or ρdet/ρsrt, respectively. However,

if the class is UseEither, then the choice is not fully defined

by the profiling information. To deal with this ambiguity, we

consider two variants of the LB approach: LB-W chooses to

wait in the case of UseEither, and LB-R chooses UseReactive.
Both variants are studied in the evaluation.

B. Experimental Setup

The systems evaluates the need for adaptation at each minute,

and determines an action, if adaptation is needed. For the profil-

ing process, we configured the worst-case planning time (td) for
ρmdp as 1 minute, chosen as an over-approximation after a large

number of trial runs (which took between 35 and 55 seconds).

For UAVs, the horizon for ρsrt and ρlng is 2 and 5 minutes,

respectively. Except aggregate utility (based on Formulas 1, and

2), all the parameters (e.g, choice of reactive/deliberative plan-

ning, instantiation of CB, LB-W, and LB-R) are independent.

For each trace/mission, we define higher effectiveness of a plan-

ning approach as greater utility accrued over the trace/mission.

The objectives for the evaluation is to investigate: if (a) using

the LB/CB approach improves the effectiveness of HP com-

pared to its constituent approaches, and (b) the LB approach to

solve PLNSEL is more effective compared to the CB approach.

To meet these objectives, each trace/mission was evaluated

in seven modes: (i) non-wait reactive — only ρdet/ρsrt is used

(i.e., used ρdet for the cloud and ρsrt for the UAVs); (ii) wait —

only ρwait is used, which essentially means the system does not

adapt; (iii) deliberative — the system invokes ρmdp/ρlng (i.e.,

used only deliberative planning ρmdp for the cloud and ρlng
for the team), and waits until a deliberative plan is available;

(iv) non-wait hybrid planning (NW-HP) — when ρdet/ρsrt is

always invoked until a deliberative plan is ready; (v) condition-

based HP — when a deliberative plan is not available, ρdet and

ρsrt is invoked only when the predefined conditions are met as

described in Section IV-A and Section IV-B, respectively; (vi)

LB-W HP — the LB approach solves PLNSEL and invokes

ρwait if classification is uncertain; and (vii) LB-R HP — the

same LB approach solves PLNSEL, but invokes ρdet/ρsrt if

classification is uncertain. Non-wait reactive and wait modes

represent the two possible reactive modes given ρmdp/ρsrt and

ρwait. The CB approach that calls ρwait was not considered

separately since it is equivalent to the deliberative mode. In both

the systems, although the classifier performed well during the

cross-validation, comparison of the LB modes (i.e., LB-W and

LB-R) with NW-HP and deliberative mode will further indicate

whether the learned classifier was able to switch effectively

between the reactive approaches (i.e., ρwait and ρdet/ρsrt);
NW-HP and deliberative mode use only one reactive approach.

C. Results
The results of our experiments show that on average (both

the LB and CB) hybrid planning outperforms its constituent

planners, but LB outperforms CB. Also, to aid software

engineers, we characterize the impact of constituent planners

on the performance of the hybrid planners.

Figure 2: Utility differences per trace/mission added up for all

traces/missions. Each bar represents a sum of differences for a

pair of planning approaches.

1) Hybrid Planning Outperforms its Constituent Planners:
Our experiments in both systems indicate that HP provides
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more utility than individual planning, as depicted in Figures 2

and 3. In Figure 2, the box-plots show the differences in accrued

utility (per trace/mission) when comparing pairs of planning

approaches. The boxes represent the median 50% of traces (in

terms of the difference between a pair of planners), with the

horizontal lines inside showing the median difference across

the traces. The whiskers show the minimum and maximum

difference in utilities. For example, the leftmost box compares

CB to only using reactive (i.e., ρdet/ρsrt). The lower edges

(i.e., the first quartile) of the six leftmost boxes are above zero,

indicating that for most of the traces/missions HP provides

equal-or-higher utility compared to non-hybrid approaches.

Specifically for the cloud-based system, CB, LB-W, and

LB-R show equal-or-higher utility than both reactive and

deliberative planners on 57 (66%), 60 (69%), and 57 (66%)

traces respectively (out of 87 total); moreover, for the respective

boxes, the positive whisker is longer than the negative one,

indicating higher maximum gain than loss when choosing HP.

Based on the estimator of true probability with a confidence

level of 95%, the true probability ranges for the three HP

approaches to match or improve over both non-hybrid planners

are (0.55; 0.76), (0.58; 0.80), and (0.55; 0.76). For the UAVs,

CB, LB-W, and LB-R show higher-or-equal utility than

both reactive and deliberative planners on 51 (71%), 55

(78%), and 56 (80%) traces respectively (out of 70 total). The

longer negative whiskers for the 1st, 3rd, and 5th box-plot are

explained by the team being averse to destruction in reactive

mode, which avoids the threats at all costs; therefore, in certain

missions the team survives, but in HP modes it gets destroyed

(i.e., mission failure), losing significant overall utility. Based

on the estimator of true probability with a confidence level of

95%, the true probability ranges for CB, LB-W, and LB-R

to match or improve over both non-hybrid planners is (0.58;

0.82), (0.65; 0.89), and (0.67; 0.9), respectively.

We also found that it is unlikely that HP performs worse

than both reactive and deliberative planning; therefore, using

HP is less risky compared to reactive or deliberative planning.

Out of 87 traces, HP does worse than both non-hybrid planners

only in 1 (1%), 5 (6%), and 5 (6%) traces for CB, LB-W,

and LB-R planning, respectively. This leads us to, respectively,

(0,0.12), (0,0.16), and (0,0.16) probability ranges of both

reactive and deliberative planning outperforming HP according

to the estimator of true probability, with 95% confidence. For

the UAVs, HP does worse than both non-hybrid planners only

in 4 (6%), 2 (3%), and 2 (3%) missions respectively (out of 70

total). The true probability ranges for the three HP approaches

to match or improve over both non-hybrid planners are (0; 0.17),

(0; 0.15), and (0; 0.15). Therefore, when choosing between

deliberative, reactive, and HP, the latter is the least risky choice.
2) Learning-based Outperforms Condition-based approach:

Our experiments show that LB provides more utility than CB

on average. In Figure 2, the 7th and 8th box is above zero,

indicating that for the majority of traces/missions LB does

equal-or-better than CB. Specifically, out of 87 traces, LB-W

and LB-R provided higher or equal utility for 70 (80%) and

62 (71%) traces, respectively. The estimator of true probability

suggests with a confidence of 95% that the true probability

Figure 3: Pairwise performance comparison of planning ap-

proaches. Each bar is for a pair of approaches, labeled with

the counts (out of the total traces/missions) of traces/missions

where the first approach provides higher/equal/lower utility

compared to the second approach in the pair.

range for the CB approach yielding higher utility than LB-W

and LB-R is (0.09,0.3) and (0.18,0.39), respectively. For

the UAV team, out of 70 missions, both LB-W and LB-R

provided higher or equal utility for all the 70 missions. With

a confidence of 95%, the true probability range for the CB

yielding higher utility is (0,0.12). Thus, it is less risky, and
in many cases advantageous, to use the LB over the CB.

However, the magnitude of the utility difference between

CB and LB is smaller than that between HP and its constituent

planners. The reason is, in response to CB constraint violations,

reactive planners typically propose conservative measures such

as addServer, decreaseDimmer, and IncAlt2. These
actions decrease the worst-case utility loss, which is particularly

high for the second system due to the possibility of destruction.

In contrast to CB, despite not falling behind in performance, LB

enables the system to (automatically) learn when utility could

be gained by using reactive planning, even without violations.

Thus, we conclude that CB is more risk-averse, whereas the

LB is more opportunistic since it does not limit the use of

non-wait reactive planning to constraint violations.
Similar to CB, the outperformance of LB is less significant

compared to the NW-HP mode as shown in the right-most

two boxes, because in both systems invoking non-wait reactive

planner (i.e., ρdet or ρsrt), in general, was preferred over

using ρwait.
2 However, compared to NW-HP modes, the LB

approach was able to automatically learn a classifier that

switches effectively between the reactive approaches.
3) Influence of Constituent Planners on Hybrid Planning:

Our evaluation shows that the performance of HP depends

2This fact is supported by the class imbalance of the labelled data, which
is skewed against using ρwait as presented in Section V-A; this indicates the
model checking was able to label the problems reasonably well.
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on the performance of the following modes: (i) deliberative

planning, and (ii) the (relatively) effective reactive planners.

Below is the evidence and implications for software engineers.

Deliberative planning performance has a consistent positive
impact on the performance of HP. We observe a medium-to-

strong correlation (p < 0.01) between the deliberative mode

and each of the three HP modes. For the cloud system, the

Pearson correlation is 0.95 for CB, 0.97 for LB-W, and 0.95
for LB-R. For the UAVs team, the correlation is 0.6 for CB,

0.61 for LB-W, and 0.59 for LB-R. The interpretation of this

finding is that, once a deliberative plan is ready, it inevitably

takes over from any reactive plan, hence the performances of

HP and deliberative planning are tightly coupled.

To further investigate this correlation, we conducted

chi-square independence test, which also showed that the

ability of HP to perform better than or equal to its

constituent planners significantly depends (p < 0.01) on

deliberative planning performing better than or equal to

reactive ρdet/ρsrt. For the cloud-based system, the χ2 values

for CB, LB-W, and LB-R are 43.79, 32.38, and 19.02,

indicating strong-to-moderate dependency. For the UAVs, the

χ2 values for CB, LB-W, and LB-R are 18.97, 22.16, and

20.37 also indicating strong-to-moderate dependency. This

finding supports our assumption that an effective deliberative

planning approach is a foundation for hybrid planning. As the

chi-square test suggests, one should prefer hybrid planning to

reactive planning if deliberative planning consistently provides

higher or equal utility compared to reactive approaches.

The performance of each reactive planner has a positive
impact on the performance of HP, moderated by the relative
performance of the reactive planner. We found that among

the reactive approaches, the more effective ones had a stronger

influence on the HP performance. To conclude this, we fit a

regression (the equation can be found in [6]) to the HP utility,

using deliberative and reactive utilities as independent variables.

Further, these explanatory variables were weighted with a ratio

of deliberative to NW-HP modes (for the deliberative utility)

and the inverse of that ratio (for the reactive utility). This ratio

characterizes the relative goodness of the wait planner and the

reactive planner, since these two planners represent the only

difference between the deliberative and NW-HP modes. For

both systems and all HP modes, the regression coefficients for

the weighed utilities were positive and non-zero with high sig-

nificance (p < 0.01). Our interpretation is that the more effective

reactive approaches are used more often, influencing the HP per-

formance more than those used rarely. The above holds assum-

ing that the classifier performs reasonably well (in our evalua-

tion this meant having precision/recall above 0.7 for all classes).

Therefore, we suggest identifying the more effective approaches

(by comparing their utilities or respective class counts in train-

ing data) and focusing the resources on improving them further.

VI. DISCUSSION AND CONCLUSION

This paper proposes a general learning-based approach to

PLNSEL where problems can be classified if a domain is

predictable enough to do labeling. Its advantage is non-reliance

on domain expertise for specific conditions, and on average

it performs better than the CB approach. In part this is due

to the flexibility of learning to avoid risky invocations of

reactive planning that would fit the fixed conditions, and

taking advantage of adaptation opportunities that arise outside

of fixed conditions. Although finely-tuned conditions in the

CB approach can result in performance comparable to the

LB approach (as in some scenarios in our evaluation), these

qualitative benefits of the LB approach still hold.

We believe the steps to apply our LB approach to PLNSEL

can be automated, thereby reducing the burden on engineers.

The steps involved are (a) gathering planning problems for

training and estimating the deliberative planning time, (b) using

probabilistic model checking to label these problems, and (c)

training a classifier using these labels. Gathering training prob-

lems and planning times is often straightforward for modern-

day enterprise systems (e.g., Netflix) and automated vehicles

(e.g., UAVs) using their execution logs. Labeling the problems

using model checking can also be automated as we did for

the two systems; the framework is available as an open-source

project (https://github.com/Ashutoshp/ProfileInfra). Finally,

machine learning frameworks (e.g., scikit-learn for Python)

can be used to automate the training process. Guidelines

for challenges beyond solving PLNSEL, such as instantiating

constituent planners, can be found in our other work [2].

Using model checking is fundamental to our LB approach

as it determines the accurate labels of training problems

given the a priori uncertainty. Moreover, (multiple) existing

model checkers ease adoption, automation, and reuse of the

LB approach. Future work includes investigation of other

techniques to label problems and using unsupervised learning.

A. Threats to Validity
The internal validity of our study is threatened by three

potentially confounding factors. First, our objective function

for cross-validation (recall on UseWait) could lead to increased

performance of the LB approaches. This threat is mitigated

by precision and recall for other classes also being high for

our chosen classifier, and that the patterns are observed in

experiments with a broad range of classifier performances.

However, it is possible that the classifier could lead to higher

utility than that of LB-W and LB-R.

Second, the relative performances of the CB and LB

approaches are due to the specific conditions for triggering

reactive planning. Although this condition is tied to the system’s

utility function, it is possible to fine-tune it further, to approach

the theoretical limit of perfectly matching a situation to a

reactive approach. However, this fine-tuning is difficult in

practice due to the multi-dimensional utility function and

uncertainty in the external environment that leads to uncertainty

in (reactive) action outcomes. Therefore, we expect this tuning

to have a minor effect on the evaluation results.

Third, the performance of the LB and CB approaches may

depend on system parameters (e.g., server costs, ECM factors),

changing which might affect the penalties for poor quick

reactions. This threat is mitigated by two different test-beds

and hybrid planners, and a sizable set of traces/missions with

substantial variation, which leads to a robust assessment of
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planner performance through cross-validation. In the authors’

knowledge, this is the largest set of traces ever used for

evaluation on a cloud-based system.

To measure effectiveness of planners, we use cumulative

utility functions (presented in Section IV). These functions

express conflicting goals, and similar functions are used to

measure performance of cloud-based systems/UAV teams in

related work [15]. Such utility functions are applicable when

there is a need to accumulate correct behavior while avoiding

undesirable behavior, by performing actions with uncertain

outcomes in uncertain environments (modeled as MDPs).

The external validity of our conclusions is threatened by

the use of only two systems and three reactive planners

(ρdet, ρsrt, and ρwait). In theory, the LB approach should

apply to any number of reactive approaches in set F , although

we evaluate using only two planners at a time. As a sanity

check, we compare the LB approach with deliberative only and

NW-HP mode; these modes are constrained to use only one

of the reactive approaches. The LB approach outperforming

them shows that the classifier switched effectively between

the reactive approaches. This conclusion is corroborated by

the precision/recall values from cross-validation. Furthermore,

labeled training data can be used to narrow down the set

of constituent planners. The interactions between a hybrid

planner and its constituent approaches are dependent on various

factors, including the utility function and assumptions behind

the approach. We expect these factors to hold for any utility

function that is accrued over states of traces/missions and

reflects that fast reactions are vital to the system’s goals, yet

the choice of when to react is not obvious.

We further mitigate the threat to validity by evaluating on

two well accepted testbeds (i.e., SWIM [4] and DartSim [5])

for self-adaptive research that differ in three significant ways:

● The ability to recover from poor/delayed actions: Even

if the cloud-based system fails to maintain the critical

response time constraint due to poor/delayed actions, it

can still recover back to a desired state later. However in

case of the UAV, a failure to avoid a crash (i.e., safety

constraint) will lead to a mission failure as illustrated by

the negative long whiskers in Figure 2.

● Different instantiations of hybrid planning: Reactive

planning for the cloud system ignores uncertainty, whereas

for UAVs it uses a reduced horizon and set of actions.

● Different proportions of class labels: The cloud system has

a large proportion of UseEither, whereas the UAV team

has a similar proportion of UseReactive and UseEither.

B. Conclusion

In the past, the promising idea of hybrid planning has

been studied from theoretical [2] and algorithmic [10], [7]

perspectives. In this paper, we improve its engineering aspects

by providing (i) a learning-based approach to planning selection,

which aims to replace domain-specific hard-coded conditions

for invoking reactive planning, and (ii) the correlation be-

tween the performance of hybrid planning and its constituent

planners. One of the barriers to adopting the learning based

approach is the difficulty in having a labeled set of training

planning problems. We overcome this in a novel way by using

probabilistic model checking to label the training problems.

Moreover, this enables the steps (including model checking) of

the learning-based approach to be automated. Our evaluation

uses two realistic systems from different domains and with

different combinations of planners indicating generality of

hybrid planning and the learning-based approach.
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