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ABSTRACT
Autonomous systems with machine learning-based perception can

exhibit unpredictable behaviors that are difficult to quantify, let

alone verify. Such behaviors are convenient to capture in proba-

bilistic models, but probabilistic model checking of such models

is difficult to scale — largely due to the non-determinism added

to models as a prerequisite for provable conservatism. Statistical

model checking (SMC) has been proposed to address the scalabil-

ity issue. However it requires large amounts of data to account

for the aforementioned non-determinism, which in turn limits its

scalability. This work introduces a general technique for reduction

of non-determinism based on assumptions of “monotonic safety”,

which define a partial order between system states in terms of

their probabilities of being safe. We exploit these assumptions to

remove non-determinism from controller/plant models to drasti-

cally speed up probabilistic model checking and statistical model

checking while providing provably conservative estimates as long

as the safety is indeed monotonic. Our experiments demonstrate

model-checking speed-ups of an order of magnitude while main-

taining acceptable accuracy and require much less data for accurate

estimates when running SMC — even when monotonic safety does

not perfectly hold and provable conservatism is not achieved.

KEYWORDS
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1 INTRODUCTION
Model checking is a well-established way to assure a safety-critical

CPS, such as a self-driving car, by searching for violations of a

safety property in the reachable states of a system model. Recent

advances in perception based on machine learning (ML) have chal-

lenged model checking with unpredictable, difficult-to-model be-

haviors [3, 13, 31]. The uncertainties of ML-based perception and

the environment where it is deployed call for probabilistic model

checking (PMC) [14, 21, 29], which computes a probability that a

property holds (e.g., the chance of no collisions). However, unpre-

dictable outputs and qualitative perception errors [5], such as false

negatives, can introduce complex behaviors which lead to scalabil-

ity issues when performing PMC for CPS with ML components.

A common way of addressing these scalability issues is with

abstractions, which simplify system models while preserving their

properties of interest. For example, instead of treating a system’s

state space as continuous, one can grid it up into intervals, thus

shrinking the size of the model and reducing the run time of prob-

abilistic model checking. However, many abstraction techniques

rely on non-determinism to ensure conservatism (e.g., one state

grid cell can transition to multiple next grid cells on a given input).

The model checker must then account for these non-deterministic

choices, which then leads to new scalability issues.

SMC offers an alternative to PMC. SMC samples traces of a prob-

abilistic model and uses statistical methods to obtain guarantees

about the model’s behavior. In the case of probabilistic models with

non-determinism, this is done by employing lightweight scheduler

sampling (LSS) [24]. However, LSS needs to separately sample both

the probabilistic and non-deterministic behaviors of the system in

question, which makes it very data hungry in the presence of large

amounts of non-determinism.

To improve the scalability of PMC and data efficiency of LSS,

this paper introduces a novel way to reduce non-determinism in

the intermediate abstractions of models. This reduction is based on

assumptions of monotonic safety (MoS) that capture our intuition

about which states have a higher chance of safety than others. En-

coded as partial orders, these assumptions draw on domain-specific

knowledge to characterize broad safety principles in a particular sys-

tem. For instance, in an obstacle-avoidance scenario, being further

away from an obstacle is generally safer than being closer to it. MoS

assumptions can be used to simplify models. These simplifications

intend to maintain conservative safety estimates and, when MoS as-

sumptions hold, are provably conservative. Specifically, we simplify

models usingMoS-driven trimming of non-deterministic transitions

leading to MoS-safer states. This reduction in non-determinism

speeds up PMC and improves the data efficiency of LSS.

Ultimately, MoS assumptions are heuristic and may not strictly

hold in all situations: in rare cases it is worth being a little closer

to the obstacle so that the perception is more accurate. Typically,

it is not immediately clear where MoS holds or how to efficiently

compute that MoS holds. However, we show empirically that MoS

assumptions do not need to strictly hold in every state to be useful,

as long as they hold most of the time.

We instantiate our MoS assumptions and MoS-driven trimming

on two simulated case studies: automated braking for an autonomous

vehicle and flow control of water tanks. Our MoS-driven trimming

produces abstractions which estimate the safety probability of the

system and are compared with standard conservative abstractions.

Experiments show that our abstractions improve the scalability

of PMC by an order of magnitude and the data efficiency of LSS

by at least an order of magnitude. Moreover, we observe that our

abstractions remain empirically conservative, even when not prov-

ably so: they do not overestimate the chance of safety in practice,

even though MoS assumptions only hold in most of the states.

This paper makes three contributions: (i) a novel notion of MoS

assumptions and their use for transition trimming, (ii) conservatism

proofs for transition trimming underMoS assumptions, (iii) an appli-

cation of MoS-trimmed abstractions to emergency braking systems
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and flow control in water tanks, resulting in high-performing in-

stances of abstractions and quantifications of the MoS assumptions.

The rest of the paper is organized as follows. We introduce

two complementary motivating systems in Section 2 and give the

necessary formal background in Section 3. Section 4 introducesMoS

assumptions. Section 5 explains how we exploit MoS assumptions

to trim non-determinism from models. We describe the results of

our two case studies in Section 6. The paper ends with related work

(Section 7) and a conclusion (Section 8).

2 MOTIVATING SYSTEMS
Throughout the paper, we consider two systems with complemen-

tary complexities. The first one, emergency braking, has a stateless
multi-output controller, a stateful binary-output perception, and

a total-order MoS in each state dimension. The second one, water
tanks, has a stateful binary-output controller, a stateless multi-

output perception, and a U-shaped MoS assumption.

2.1 First System: Emergency Braking
Consider an autonomous car approaching a stationary obstacle. The

car is equippedwith a controller which issues braking commands on

detection of the obstacle and an ML-based perception system which

detects obstacles. The safety goal of the car is to fully stop before

hitting the obstacle. Following are the car dynamics, controller, and

perception used in the paper.

A discrete kinematics model with time step 𝜏 represents the

velocity (𝑣) and position (𝑑 , same as the distance to the obstacle) of

the car at time 𝑡 :

𝑑 [𝑡] = 𝑑 [𝑡 − 𝜏] − 𝜏 × 𝑣 [𝑡 − 𝜏], 𝑣 [𝑡] = 𝑣 [𝑡 − 𝜏] − 𝜏 ×𝑏 [𝑡 − 𝜏], (1)
where 𝑏 [𝑡] is the braking command (a.k.a. the “braking power”, BP)

at time 𝑡 .

We use an Advanced Emergency Braking System (AEBS) [23]

which uses two metrics to determine the BP: time to collide (𝑇𝑇𝐶)

and warning index (𝑊𝐼 ). The 𝑇𝑇𝐶 is the amount of time until a

collision if the current velocity is maintained. The𝑊𝐼 represents

how safe the car would be in the hands of a human driver (positive

is safe, negative is unsafe).

𝑇𝑇𝐶 =
𝑑

𝑣
, 𝑊 𝐼 =

𝑑 − 𝑑𝑏𝑟
𝑣 ·𝑇ℎ

, 𝑑𝑏𝑟 = 𝑣 ·𝑇𝑠 +
𝑢 · 𝑣2

2𝑎𝑚𝑎𝑥
, (2)

where 𝑑𝑏𝑟 is the braking-critical distance,𝑇𝑠 is the system response

delay (negligible), 𝑇ℎ is the average driver reaction time (set to 2s),

𝑢 is the friction scaling coefficient (taken as 1), and 𝑎𝑚𝑎𝑥 is the

maximum deceleration of the car.

Upon detecting the obstacle, the AEBS chooses one of three BPs:

no braking (BP of 0), light braking (𝐵1), and maximum braking

(𝐵2 = 𝑎𝑚𝑎𝑥 ). If the obstacle is not detected, no braking occurs. The

BP value, 𝑏, is determined by𝑊𝐼 and 𝑇𝑇𝐶 crossing either none,

one, or both of the fixed thresholds 𝐶1 and 𝐶2:

𝑊𝐼 > 𝐶1 ∧𝑇𝑇𝐶 > 𝐶2 =⇒ 𝑏 = 0

(𝑊𝐼 ≤ 𝐶1 ∧𝑇𝑇𝐶 > 𝐶2) ∨ (𝑊𝐼 > 𝐶1 ∧𝑇𝑇𝐶 ≤ 𝐶2) =⇒ 𝑏 = 𝐵1

𝑊𝐼 ≤ 𝐶1 ∧𝑇𝑇𝐶 ≤ 𝐶2 =⇒ 𝑏 = 𝐵2

To detect the obstacle, the car uses the deep neural network

YoloNetv3 [25], as it can run at high frequencies [27]. We say a low-

level detection of the obstacle occurs when Yolo detects the obstacle.

To reduce noise, we apply a majority vote filter to the low-level

detections, so the AEBS receives a high-level detection with the

distance to the obstacle if at least 2 of the past 3 Yolo outputs were

low-level detections. We model Yolo probabilistically based on two

observations. First, Yolo’s chance of detection is higher when the car

is closer to the obstacle. Second, consecutive low-level detections

correlate with each other due to weather conditions and similar car

positions. Our perception model conditions the detection chance

on the distance from the obstacle and the recent detection history.

The safety property of interest,𝜓𝑛𝑜𝑐𝑜𝑙 , is the absence of a colli-

sion, specified in linear temporal logic (LTL) [26] as

𝜓𝑛𝑜𝑐𝑜𝑙 := □ (𝑑 > 𝐿) , (3)

where 𝐿 is the minimum allowed distance to the obstacle and is

taken to be 5m. Note that in this model the car eventually stops or

collides, so for any initial condition there is an upper bound on the

number of time steps.

2.2 Second System: Water Tanks
Consider a system consisting of 𝐽 water tanks, each of size 𝑇𝑆 ,

draining over time and a controller that maintains some water level

in each tank. With𝑤𝑖 [𝑡] as the water level in the 𝑖𝑡ℎ tank at time

𝑡 , the discrete time dynamics for the water level in the tank at the

next time step is given by:

𝑤𝑖 [𝑡 + 1] = 𝑤𝑖 [𝑡] − 𝑜𝑢𝑡𝑖 [𝑡] + 𝑖𝑛𝑖 [𝑡], (4)

where 𝑖𝑛𝑖 [𝑡] and 𝑜𝑢𝑡𝑖 [𝑡] are the amounts of water entering (“in-

flow”) and leaving (“outflow”) respectively the 𝑖𝑡ℎ tank at time 𝑡 .

The inflow is determined by the controller and the outflow is a

constant determined by the environment.

Each tank is equipped with ML-based perception to report its

current perceived water level, �̂� , which is a random function of the

true current water level, 𝑤 . In the simulated system (playing the

role of the reality), �̂� is determined as a positively-skewed high-

variance mixture-of-gaussians error added to 𝑤 . The gaussians

have higher variance for water levels in the middle of the tank

and smaller variance near the edges of the tank. In addition, with

constant probability the perception can output �̂� =0 or �̂� =𝑇𝑆 (to

account for a large range of perception errors).

We model perception probabilistically as a categorical distribu-

tion of perception error, 𝑒 . The possible error values are integers

within some 𝐸𝑊 -sized error window,

−𝐸𝑊 , . . . ,−1, 0, 1, . . . , 𝐸𝑊 ,

plus two special values to capture unexpected outputs of ML-based

perception (e.g., due to water reflections or deep network pecu-

liarities): 𝐹𝑈 to indicate that a spurious reading of the tank being

full occurred (then �̂� = 𝑇𝑆), and 𝐸𝑀 to indicate that a spurious

reading of the tank being empty occurred (then �̂� = 0). Hence, this

perception model has 2𝐸𝑊 + 3 parameters.

The controller has a single source of water to fill one tank at a

time (or none at all) based on the perceived water levels. Then this

tank receives a constant value 𝑖𝑛 > 0 of water, whereas the other

tanks receive 0 water. The controller only starts filling a tank that

has water below the lower decision threshold 𝐿𝑇 and stops filling

after the water reaches the upper threshold𝑈𝑇 . After filling a tank

or taking one step of not filling, if the controller perceives multiple
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tanks below 𝐿𝑇 , it starts filling the one with the least perceived

water (or, if equal, with the lowest ID 1. . . 𝐽 ).

The safety property,𝜓flow, is that each tank must never run out

of water (i.e.,𝑤 = 0) or overflow (i.e.,𝑤 = 𝑇𝑆). This property can

be expressed as the following time-bounded LTL formula:

𝜓flow := □𝑇
(
0 < 𝑤1 < 𝑇𝑆 ∧ · · · ∧ 0 < 𝑤 𝐽 < 𝑇𝑆

)
(5)

where 𝑇 is a fixed number of time steps within which the tanks

should be kept is the water level resulting in overflow of tanks.

3 BACKGROUND, SYSTEM MODELS, AND LSS
In the following Definitions 3.1 to 3.3, borrowed from Kwiatkowska

et al. [22], we use 𝐷𝑖𝑠𝑡 (𝑆) to refer to the set of probability distribu-

tions over a set 𝑆 , [𝑠 as the distribution with all its probability mass

on 𝑠 ∈ 𝑆 , and `1 × `2 to be the product distribution of `1 and `2.

Definition 3.1. A probabilistic automaton (PA) is a tuple M =

(𝑆, 𝑠, 𝛼, 𝛿, 𝐿), where 𝑆 is a finite set of states, 𝑠 ∈ 𝑆 is the initial state,
𝛼 is an alphabet of action labels, (𝑆, 𝛼, 𝐷𝑖𝑠𝑡 (𝑆)) ∈ 𝛿 is a probabilistic
transition relation, and 𝐿 : 𝑆 → 2

𝐴𝑃
is a labeling function from

states to sets of atomic propositions from the set AP.

If (𝑠, 𝑎, `) ∈ 𝛿 then the PA can make a transition in state 𝑠 with

action label 𝑎 and move based on distribution ` to state 𝑠 ′ with

probability ` (𝑠 ′), which is denoted by 𝑠
𝑎−→ `. If (𝑠, 𝑎, [𝑠′) ∈ 𝛿 then

we say the PA can transition from state 𝑠 to state 𝑠 ′ via action 𝑎.
A state 𝑠 is terminal if no elements of 𝛿 contain 𝑠 . A path in 𝑀 is

a finite/infinite sequence of transitions 𝜋 = 𝑠0
𝑎0,`0−−−−→ 𝑠1

𝑎1,`1−−−−→ . . .

with 𝑠0 = 𝑠 and `𝑖 (𝑠𝑖+1) > 0. A set of paths is denoted as Π. We use

M(𝑠) to denote the PA M with initial state 𝑠 .

Reasoning about PAs also requires the notion of schedulers, which
resolve the non-determinism during an execution of a PA. For our

purposes, a scheduler 𝜎 maps each state of the PA to an available

action label in that state. We use Π𝜎
M for the set of all paths through

Mwhen controlled by scheduler 𝜎 and 𝑆𝑐ℎM for the set of all sched-

ulers for M. Finally, given a scheduler 𝜎 , we define a probability

space 𝑃𝑟𝜎M over the set of paths Π𝜎
M in the standard manner.

Given PAsM1 andM2, we define parallel composition as:

Definition 3.2. The parallel composition of PAsM1 = (𝑆1, 𝑠1, 𝛼1, 𝛿1, 𝐿1)
and M2 = (𝑆2, 𝑠2, 𝛼2, 𝛿2, 𝐿2) is given by the PA M1 | |M2 = (𝑆1 ×
𝑆2, (𝑠1, 𝑠2), 𝛼1 ∪ 𝛼2, 𝛿, 𝐿), where 𝐿(𝑠1, 𝑠2) = 𝐿1 (𝑠1) ∪ 𝐿2 (𝑠2) and 𝛿
is such that (𝑠1, 𝑠2)

𝑎−→ `1 × `2 iff one of the following holds: (i)

𝑠1
𝑎−→ `1, 𝑠2

𝑎−→ `2 and 𝑎 ∈ 𝛼1 ∩ 𝛼2, (ii) 𝑠1
𝑎−→ `1, `2 = [𝑠2

and

𝑎 ∈ (𝛼1 \ 𝛼2), (iii) `1 = [𝑠1
, 𝑠2

𝑎−→ `2 and 𝑎 ∈ (𝛼2 \ 𝛼1).

In this paper, we are concerned with probabilities of safety prop-

erties, which we state using LTL formulas over state labels.

Definition 3.3. For LTL formula 𝜓 , PA M, and scheduler 𝜎 ∈
𝑆𝑐ℎM, the probability of𝜓 holding is:

𝑃𝑟𝜎M (𝜓 ) B 𝑃𝑟𝜎M{𝜋 ∈ Π𝜎
M | 𝜋 |= 𝜓 }

where 𝜋 |= 𝜓 indicates that the path 𝜋 satisfies 𝜓 in the standard

LTL semantics [26]. We specifically consider LTL safety properties,

which are LTL specifications that can be falsified by a finite trace

though a model. Both𝜓𝑛𝑜𝑐𝑜𝑙 and𝜓flow are LTL safety properties.

Figure 1: The models of controller/plant Mcpl (left) and percep-
tionMper (right) in the emergency braking system. The dashed grey
boxes indicate layers of states, with one state for each pair of dis-
tances and speeds. The red transition is probabilistic.

Probabilistically verifying an LTL formula𝜓 against𝑀 requires

checking that the probability of satisfying 𝜓 meets a probability

bound for all schedulers. This involves computing the minimum or

maximum probability of satisfying𝜓 over all schedulers:

𝑃𝑟𝑚𝑖𝑛
M (𝜓 ) B inf𝜎 ∈𝑆𝑐ℎM 𝑃𝑟

𝜎
M (𝜓 )

𝑃𝑟𝑚𝑎𝑥
M (𝜓 ) B sup𝜎 ∈𝑆𝑐ℎM

𝑃𝑟𝜎M (𝜓 )

We call 𝜎 a min scheduler ofM if 𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝑚𝑖𝑛
M (𝜓 ). We use

𝑆𝑐ℎ𝑚𝑖𝑛
M to denote the set of min schedulers ofM.

3.1 Probabilistic Automata for Motivating
Systems

We now describe howwe construct the baseline PAs for the systems

described in Section 2. We always start with two models: a non-

probabilistic, discrete time, infinite state controller-plant model

M
cpl

and a probabilistic perception modelMper. Our goal is to ab-

stract them as PAs and compose them so that we can analyze their

safety properties. As an illustration, we discuss our models for the

emergency braking system, shown in Figure 1.Mper probabilisti-

cally generates either detections or non-detections of the obstacle

and sends them to M
cpl

, which then selects a braking command

in response to the detection/non-detection and updates its (con-

tinuous) distance and speed values accordingly. M
cpl

then sends

the distance to the obstacle back to Mper, which it uses to alter its

detection/non-detection probabilities. We now describe how we

constructMper as a PA before describing how to form a standard

PA abstraction ofM
cpl

. Note thatM
cpl

is not a PA since it has an

infinite number of states.

Mper has three actions — D (detection), M (non-detection), dis-
tance=d (𝑑), all of which are synchronized with M

cpl
. Colloquially,

we say that Mper transmits actions D and M to M
cpl

and M
cpl

transmits parameterized action 𝑑 toMper.Mper conditions its de-

tection probabilities on both the distance 𝑑 and its last𝑊 low-level

readings and uses a majority-vote filter over its last 𝑁𝐹 low-level

readings to determine its output of either D or M, as described in

Section 2. The choice of low-level detection is the only probabilistic

transition in Mper (and the whole system). Mper waits for Mcpl

to transmit its distance. Then it makes an internal detection and

checks if at least half of the previous 𝑁𝐹 low-level readings were

detections. If so, it transmits D. If not, it transmitsM. Either way,

it then waits for M
cpl

to transmit the new distance 𝑑 .

We now describe M
cpl

and then create PA abstraction Mint. Let

𝑆 ⊂ R𝑛 be the state space ofM
cpl

, 𝑠 be the initial state, 𝐾 = {D,M}
be the set of Mper inputs, and 𝑓 : 𝑆 × 𝐾 → 𝑆 be the discrete
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(a) (b)

Figure 2: In Figure 2a a set of distance and speed states (box 1) are
grouped into a single entity and the set of possible next states (poly-
gon 2) is computed. In Figure 2b the set of next states is used to
compute the new transitions from box 1, which go to boxes 3-6.

transition relation (i.e. if M
cpl

is in state 𝑠 ∈ 𝑆 and receives high-

level detection 𝑘 ∈ 𝐾 from Mper, then at the next time point it will

be in state 𝑓 (𝑠, 𝑘)).
The state space of Mint, denoted 𝑆

′
, is formed by dividing 𝑆 into

a discrete, finite set of regions using equally sized intervals
1
(see the

squares formed by the dashed lines in Figure 2a). So every 𝑠 ′
1
∈ 𝑆 ′

has a corresponding region 𝑆1 ⊂ 𝑆 . The initial state 𝑠 ′ is the state
in 𝑆 ′ which contains 𝑠 in its set of corresponding states. The set of

Mper inputs 𝐾 = {D,M} is unchanged. The transition relation 𝛿 ′

is formed as follows:

(𝑠 ′
1
, (𝑘 × 𝛼 ′), [𝑠′

2

) ∈ 𝛿 ′ if (6)

∃𝑠 ′
2
∈ 𝑆 ′, ∃𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2, 𝑠 .𝑡 .𝑓 (𝑠1, 𝑘) = 𝑠2

In other words,Mint has a transition from 𝑠 ′
1
to 𝑠 ′

2
(inMint) if at least

one state in 𝑆1 has a transition to a state in 𝑆2 (inM
cpl

). For an illus-

tration of this, see Figure 2. Note that 𝛿 ′ is non-deterministic due to

the perception values 𝐾 and the reachability analysis over the inter-

vals of states inM
cpl

. The latter of two types of non-determinism

is captured by the extra action labels 𝛼 ′ ∈ 𝐴′
. Each instance of the

reachability non-determinism gets its own unique action label from

𝐴′
(see the different arrows in Figure 2b) and the perception non-

determinism will be resolved when the model gets composed with

Mper. Whenever Mint makes a transition, it transmits the distance

range corresponding to its next state 𝑠 ′
2
forMper to synchronize on.

The discrete states 𝑠 ′
𝑖
∈ 𝑆 ′ inherit any atomic labels 𝑙 ∈ 𝐿 from the

states in 𝑆𝑖 , leading to labelling function 𝐿
′
. Finally, we convertMint

into a PA using the tuple notation from definition Definition 3.1:

Mint = {𝑆 ′, 𝑠 ′
0
, 𝐾 ×𝐴′, 𝛿 ′, 𝐿′}.

We now form our baseline model, which we also denote as

Mint, by taking Mper | |Mint. Note that the resulting model has non-

determinism in its transition relation, which our MoS assumptions

will aim to remove.

For the water tank system, the Mper and Mint models are con-

structed from equations in Section 2 in a similar fashion: Mper

encodes the perception probabilistically and Mint is a PA based

interval abstraction of M
cpl

encoding the controller and plant

non-probabilistically. Mint communicates the true water levels

(𝑤1 . . .𝑤 𝐽 ) toMper and receives the perceivedwater levels (�̂�1 . . . �̂� 𝐽 ).

1
The size of these intervals is a modeling hyperparameter. We explore how it affects

the abstractions in Section 6.

The execution terminates either when the safety property is vio-

lated or time 𝑇 is reached.

3.2 Statistical Model Checking for PAs
This section formalizes the process of running LSS on PA M to

approximate 𝑃𝑟𝑚𝑖𝑛
M (𝜓 ). First, a set of schedulers are sampled uni-

formly from 𝑆𝑐ℎM:

𝜎1, . . . , 𝜎𝑛 ∼ 𝑈𝑛𝑖 𝑓 (𝑆𝑐ℎM)

Then the probability of M under scheduler 𝜎𝑖 , which we denote

as 𝑝𝑖 B 𝑃𝑟
𝜎𝑖
M (𝜓 ), is computed via sampling traces from the fully

probabilistic model of M when scheduler 𝜎𝑖 is fixed. Finally, the

smallest probability is returned: 𝑃𝑟
𝐿𝑆𝑆,𝑛
M (𝜓 ) =𝑚𝑖𝑛(𝑝1, . . . , 𝑝𝑛).

Since LSS relies on sampling schedulers, its output is a random

variable. So consecutive runs of LSS can give different results. In

addition, running LSS requires 𝑛 iterations of standard statistical

analysis ofMwith fixed schedulers. Reducing𝑛 lowers the run times

of LSS, but will also give less conservative results on average. The

ideal choice of 𝑛 depends both on the computational resources at

hand and the estimated size of the set of schedulers |𝑆𝑐ℎM |. LSS will
never output a smaller value than PMC, so 𝑃𝑟

𝐿𝑆𝑆,𝑛
M (𝜓 ) ≥ 𝑃𝑟𝑚𝑖𝑛

M (𝜓 ).
However, as 𝑛 → ∞, 𝑃

(
𝑃𝑟

𝐿𝑆𝑆,𝑛
M (𝜓 ) = 𝑃𝑟𝑚𝑖𝑛

M (𝜓 )
)
→ 1, which is to

say that with enough samples LSS will eventually find the smallest

satisfaction probability. In practice |𝑆𝑐ℎM | will be extremely large,

thus requiring very large 𝑛 to obtain reasonable safety estimates.

Remark. For a complete description of LSS, see [11, 24].

4 ASSUMPTIONS OF MONOTONIC SAFETY
This section starts by formalizing assumptions of monotonic safety
(MoS) for both PMC and LSS

2
and stating the intuitive MoS assump-

tions for the motivating systems. Then we observe that MoS does

not always hold in practice, exemplified in our motivating systems.

Definition 4.1 (Assumption of Monotonic Safety for PMC). AnMoS
assumption for PMC is a partial order, ⪰𝑃𝑀𝐶

𝑀𝑜𝑆
, over the states 𝑆 with

respect to a given safety property𝜓 and a PAM. It stipulates that

if two states 𝑠1, 𝑠2 ∈ 𝑆 are ordered, 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2, then for every min

scheduler 𝜎 of M, the probability of M satisfying 𝜓 when using

scheduler 𝜎 and starting from state 𝑠1 is greater or equal to the

probability of M satisfying𝜓 when using scheduler 𝜎 and starting

from state 𝑠2:

𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆 𝑠2 =⇒ ∀𝜎 ∈ 𝑆𝑐ℎ𝑚𝑖𝑛

M 𝑃𝑟𝜎M(𝑠1) (𝜓 ) ≥ 𝑃𝑟𝜎M(𝑠2) (𝜓 )

Definition 4.2 (Assumption of Monotonic Safety for LSS). An MoS
assumption for LSS is a partial order, ⪰𝐿𝑆𝑆

𝑀𝑜𝑆
, over the states 𝑆 with

respect to a given safety property 𝜓 and PA M. It stipulates that

if two states 𝑠1, 𝑠2 ∈ 𝑆 are ordered, 𝑠1 ⪰𝐿𝑆𝑆
𝑀𝑜𝑆

𝑠2, then for every

scheduler 𝜎 of M, the probability of M satisfying 𝜓 when using

scheduler 𝜎 and starting from state 𝑠1 is greater or equal to the

probability of M satisfying𝜓 when using scheduler 𝜎 and starting

from state 𝑠2:

𝑠1 ⪰𝐿𝑆𝑆
𝑀𝑜𝑆 𝑠2 =⇒ ∀𝜎 ∈ 𝑆𝑐ℎM 𝑃𝑟𝜎M(𝑠1) (𝜓 ) ≥ 𝑃𝑟𝜎M(𝑠2) (𝜓 )

2
The two techniques require different MoS assumptions because they handle non-

determinism differently.
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These definitions are very general. The partial orders could relate

exactly two states in 𝑆 , or they could order some subset of states in

𝑆 , or they could even be a full ordering over states in 𝑆 .

Such assumptions are to be made by the engineers familiar with

the domain and the system at hand. By formalizing an MoS as-

sumption, an engineer aims to integrate their high-level knowledge

of the system’s operation into the formal analyses of this system.

Several assumptions can be made for a given system, and if they

do not contradict each other they can be combined into a single

overarching partial order.

One way to find candidates for MoS assumptions is to examine

the robustness, in terms of Signal Temporal Logic (STL) [12], of

the safety property 𝜓 . Intuitively, if state 𝑠1 is more STL-robust

with respect to𝜓 than state 𝑠2, then it may have a higher chance of

remaining safe in the subsequent execution. So one can formulate

an MoS partial order based on the direction of STL robustness. How-

ever, MoS assumptions can draw on substantially broader intuitions

than what can be gleaned from the safety property.

For our case studies, we consider two intuitive MoS assumptions

for our emergency braking system and its safety property𝜓𝑛𝑜𝑐𝑜𝑙 ,

and one intuitive MoS rule for our water tank system and its safety

property𝜓flow. In all three rules, consider modelM with different

initial states 𝑠1 and 𝑠2:

• Distance MoS ⪰𝑑 : “Increasing the distance to the obstacle
does not reduce the safety chance”. That is, ifM1 starts further

away, i.e.,𝑑𝑠1
≥ 𝑑𝑠2

, then it is safer thanM2: 𝑃𝑟M(𝑠1) (𝜓𝑛𝑜𝑐𝑜𝑙 ) ≥
𝑃𝑟M(𝑠2) (𝜓𝑛𝑜𝑐𝑜𝑙 ).

• Speed MoS ⪰𝑣 :“Decreasing the velocity does not reduce the
safety chance”. That is, ifM1 starts slower, i.e., 𝑣𝑠1

≤ 𝑣𝑠2
, then

it is safer thanM2: 𝑃𝑟M(𝑠1) (𝜓𝑛𝑜𝑐𝑜𝑙 ) ≥ 𝑃𝑟M(𝑠2) (𝜓𝑛𝑜𝑐𝑜𝑙 ).
• Water level MoS ⪰𝑤 : “Moving the water level in any tank
towards its middle does not reduce safety chance”. This partial
order has two branches, for each half of the tank. First, if

𝑤𝑠2
≥ 𝑤𝑠1

≥ 𝑇𝑆
2
, then 𝑃M(𝑠1) (𝜓flow) ≥ 𝑃M(𝑠2) (𝜓flow). Sec-

ond, if𝑤𝑠2
≤ 𝑤𝑠1

≤ 𝑇𝑆
2
, then 𝑃M(𝑠1) (𝜓flow) ≥ 𝑃M(𝑠2) (𝜓flow).

Note that assumptions ⪰𝑑 and ⪰𝑤 order states in the higher-robustness

direction of𝜓𝑛𝑜𝑐𝑜𝑙 and𝜓flow respectively. But the second AEBS as-

sumption, ⪰𝑣 , is an example of a more general rule not tied to𝜓𝑛𝑜𝑐𝑜𝑙 .

It was discovered by observing that higher speeds lead to greater

distance losses, and if greater distances are to be considered safer,

so should be the lower speeds. Before describing how to exploit

MoS assumptions to reduce non-determinism in PAs in Section 5,

we present some simple counter examples showing that ⪰𝑑 , ⪰𝑣 ,

and ⪰𝑤 do not always holds.

4.1 Violations of Monotonic Safety in the
Motivating Systems

For our systems, the introduced MoS assumptions rules appear

natural and intuitive: to avoid a collision, being further away and

driving slower seems safer; to avoid overflowing and underflowing,

it appears safer to keep the tanks half-full. As we will experimen-

tally show in Section 6, these intuitions are mostly correct. However,

our assumptions may not hold in some pairs of states, which we

now demonstrate on simplified models. The proofs of these coun-

terexamples are provided in Appendix A.1 and Appendix A.2.

When discussingMoS scenarios in concrete systems, we consider

state shifts encoded as changes to states with a state vector Δ. AEBS
has two-dimensional states (𝑑, 𝑣) and, hence, two types of shifts

corresponding to ⪰𝑑 and ⪰𝑣 : (Δ𝑑 > 0, 0) and (0,Δ𝑣 < 0). Each
water tank is unidimensional, so we consider scalar shifts Δ𝑤 , such

that Δ𝑤 > 0 iff𝑤 ≤ 𝑇𝑆
2
; otherwise, Δ𝑤 < 0 .

Definition 4.3. An AEBS system has distance-independent percep-
tion if the detection chance is constant: ∀𝑑, 𝑃𝑟𝑑𝑒𝑡 (𝑑) = 𝑞. Otherwise,
it is distance-dependent.

Definition 4.4. An AEBS system has one BP if the controller

bounds in Section 2 are infinite: 𝐶1 = 𝐶2 = +∞. Otherwise, it has

multiple BPs.

With two counterexamples for AEBS, we demonstrate that mul-

tiple BPs or distance-dependent perception alone are sufficient to

violate assumptions ⪰𝑑 and ⪰𝑣 . In both AEBS counterexamples, we

set the time step 𝜏 = 1𝑠 and the filter window size 𝑁𝐹 = 1.

The first counterexample shows that starting closer to the obsta-

cle may be safer due to higher detection chances at closer distances.

Counterexample 1. Assumption ⪰𝑑 does not hold in the AEBS
with one BP and distance-dependent perception for shift Δ = (1𝑚, 0)
when 𝐵 = 10𝑚/𝑠2, 𝑣0 = 11𝑚/𝑠, 𝑑0 = 13𝑚, and 𝑃𝑟𝑑𝑒𝑡 (𝑑) = 1− ⌈𝑑⌉/20.

The second counterexample shows that going at a faster speed

may be beneficial because it leads to closer distances, which result

in stronger braking.

Counterexample 2. Assumption ⪰𝑣 does not hold in the AEBS
with multiple BPs and distance-independent perception for shift Δ =

(0,−1𝑚/𝑠) when 𝐵(𝑑) = [10𝑚/𝑠2 if 𝑑 ≤ 11𝑚; 3𝑚/𝑠2 otherwise],
𝑣0 = 9𝑚/𝑠 , 𝑑0 = 20𝑚, and 𝑃𝑟𝑑𝑒𝑡 = 0.5.

Intuitively, the above counterexamples arise when, due to dis-

tance or speed shifting, themodel crosses a boundary into a different

braking mode or a detection bin with a different probability.

In the water tank system, the safest state is almost never
𝑇𝑆
2

be-

cause of the asymmetry in 𝑖𝑛 vs. 𝑜𝑢𝑡 , controller choices, perception

errors. Therefore, it is straightforward to upset the safety balance

by picking disproportionate values for inflow and outflow.

Definition 4.5. A water tank system has random perception if 𝐸𝑊
= 0 and ∀𝑖, �̂�𝑖 ∈ {𝐸𝑀, 𝐹𝑈 }.

Counterexample 3. Assumption ⪰𝑤 does not hold for a water
tank system with 𝐽 = 1,𝑇𝑆 = 100, 𝑜𝑢𝑡 = 3, 𝑖𝑛 = 40,𝑇 = 4, 𝑃𝑟 (�̂� =

0) = 0.4, and 𝑃𝑟 (�̂� = 𝑇𝑆) = 0.6,𝑤 = 10, and Δ𝑤 = 30.

5 MOS-BASED TRIMMING
This section describes how we use the MoS assumptions from

Section 4 to remove non-determinism from PAs to speed up PMC

and LSS. The two trimming procedures are slightly different, due

to the differences in how PMC and LSS handle non-determinism.

Finally, recall that our MoS trimmmings are only applied to the

non-probabilistic transitions of theMint models.

5.1 MoS Abstraction for Model Checking
We describe how to remove non-determinism from a single state

as follows:
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Definition 5.1 (Single State PMC Transition Trimming). Let PA
M = {𝑆, 𝑠, 𝛼, 𝛿, 𝐿} with MoS assumption ⪰𝑃𝑀𝐶

𝑀𝑜𝑆
be given. Consider

𝑠 ∈ 𝑆 and actions 𝛼1, 𝛼2 ∈ 𝛼 . If there exist states 𝑠1 and 𝑠2 such that

(𝑠, 𝛼1, [𝑠1
), (𝑠, 𝛼2, [𝑠2

) ∈ 𝛿 and 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2, then we return PA M′
,

which is identical to M except that it does not have (𝑠, 𝛼1, [𝑠1
) in

its transition relation.

Remark. Another way to think about this trimming is that we
remove every scheduler that picks 𝛼1 in state 𝑠 from 𝑆𝑐ℎM′ .

We now prove that under the MoS assumption from Defini-

tion 4.1 each application of the trimming procedure in Definition 5.1

is conservative. First, we introduce the following lemma which

states that the probability of M satisfying safety property𝜓 can be

decomposed by reasoning about the paths ofMwhich do and do not

pass through some state 𝑠 . The proof can be found in Appendix A.3.

Lemma 5.2 (Satisfaction Probability by Trace Decomposi-

tion). LetM be a PA. Assume that there are no infinite paths through
M. Let𝜓 be an LTL safety property. Let 𝜎 be a scheduler of M and let
𝑠 be a state of M. Then

𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (𝜓& ⋄ 𝑠)
= 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (⋄𝑠)𝑃𝑟𝜎M(𝑠) (𝜓 )

We now state the single state trimming conservatism result and

its proof.

Theorem 5.3 (PMC MoS and PMC Transition Trimming Im-

plies PMC Conservatism). LetM = {𝑆, 𝑠, 𝛼, 𝛿, 𝐿} be a PA with MoS
assumption ⪰𝑃𝑀𝐶

𝑀𝑜𝑆
. Assume that there are no infinite paths through

M. Let 𝜓 be an LTL safety property. If we trim M according to the
procedure detailed in Definition 5.1 for state 𝑠 to arrive at modelM′,
then 𝑃𝑟𝑚𝑖𝑛

M (𝜓 ) = 𝑃𝑟𝑚𝑖𝑛
M′ (𝜓 ).

Proof. Assume that state 𝑠 has non-deterministic transitions to

state 𝑠1 via action 𝛼1 and state 𝑠2 via action 𝛼2:

(𝑠, 𝛼1, [𝑠1
), (𝑠, 𝛼2, [𝑠2

) ∈ 𝛿

In addition, assume that 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2. Now consider PA𝑀 ′
that is

formed by removing (𝑠, 𝛼1, [𝑠1
) from 𝛿 . To prove that the trimming

is conservative, we just need to show that at least one min scheduler

ofM for𝜓 is contained in the set of schedulers forM′
.

Let 𝜎 be a min scheduler ofM for𝜓 . So 𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝑚𝑖𝑛
M (𝜓 ). We

now show that either 𝜎 or some other min scheduler is contained

in the set of schedulers forM′
by contradiction. Assume that 𝜎 ∉

𝑆𝑐ℎM′ . By the strong MoS assumption, 𝜎 chooses action 𝛼1 in state

𝑠 . Now consider scheduler 𝜎 ′ which picks action 𝛼2 in state 𝑠 and

is otherwise identical to 𝜎 . By Lemma 5.2, we have that:

𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (⋄𝑠)𝑃𝑟𝜎M(𝑠) (𝜓 )

𝑃𝑟𝜎
′

M (𝜓 ) = 𝑃𝑟𝜎
′

M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎
′

M (⋄𝑠)𝑃𝑟𝜎
′

M(𝑠) (𝜓 )

Note that 𝜎 , 𝜎 ′ differ only in state 𝑠 andM has no self loops since

it only has finite paths. So:

𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) = 𝑃𝑟𝜎
′

M (𝜓&¬ ⋄ 𝑠) and 𝑃𝑟𝜎M (⋄𝑠) = 𝑃𝑟𝜎
′

M (⋄𝑠)

For the final two terms, we unroll one step of each of the models

from state 𝑠 under their respective schedulers. Scheduler 𝜎 takes

M to state 𝑠1 and 𝜎 ′ takes M to state 𝑠2. Since 𝜎 , 𝜎
′
differ only

in state 𝑠 and M cannot loop back to 𝑠 from 𝑠2, it follows that

𝑃𝑟𝜎
′

M(𝑠2) (𝜓 ) = 𝑃𝑟
𝜎
M(𝑠2) (𝜓 ).

Since 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2 we have that:

𝑃𝑟𝜎M(𝑠1) (𝜓 ) ≥ 𝑃𝑟𝜎M(𝑠2) (𝜓 ) = 𝑃𝑟
𝜎′

M(𝑠2) (𝜓 )

It follows that 𝑃𝑟𝜎M (𝜓 ) ≥ 𝑃𝑟𝜎
′

M (𝜓 ). If the inequality is strict then

we have a contradiction, as 𝜎 is not a min scheduler ofM and if the

terms are equal then both 𝜎 and 𝜎 ′ are both min schedulers and

the MoS trimming preserves at least one.

□

The model-wide PMC MoS trimming procedure applies the trim-

ming procedure in Definition 5.1 to all states of the model.

Corollary 5.4. The model-wide PMC MoS trimming procedure is
conservative under Definition 4.1.

5.2 MoS Abstraction for Statistical Model
Checking

We describe how to remove non-determinism from a single state

for LSS as follows:

Definition 5.5 (Single State LSS Transition Trimming). Let M =

{𝑆, 𝑠, 𝛼, 𝛿, 𝐿} be a PA with MoS assumption ⪰𝐿𝑆𝑆
𝑀𝑜𝑆

. Consider 𝑠 ∈ 𝑆 .
Let 𝛼1, . . . , 𝛼𝑑 be the actions enabled in 𝑠 . So

(𝑠, 𝛼1, [𝑠1
), . . . , (𝑠, 𝛼𝑑 , [𝑠𝑑 ) ∈ 𝛿

for some 𝑠1, . . . , 𝑠𝑑 ∈ 𝑆 . If

𝑠1 ⪰𝐿𝑆𝑆
𝑀𝑜𝑆 𝑠𝑑 , . . . 𝑠𝑑−1

⪰𝐿𝑆𝑆
𝑀𝑜𝑆 𝑠𝑑

then we return PAM′
which is identical toM except that it does

not have (𝑠, 𝛼1, [𝑠2
), . . . , (𝑠, 𝛼𝑑−1

, [𝑠𝑛−1
) in its transition relation.

Remark. Another way to think about this trimming is that we
remove every scheduler that picks 𝛼1, . . . , 𝛼𝑑−1

in state 𝑠 from 𝑆𝑐ℎM′ .

We now prove that under the MoS assumption from Defini-

tion 4.2 each application of the trimming procedure in Definition 5.5

is conservative. Since the LSS outputs are random variables, when

we say that the results are conservative we mean that the LSS re-

sults on the untrimmedmodel have first order stochastic dominance

(FSD) over those of the trimmed model. This is a formal way of

defining that we expect M to return larger safety chances than M′
.

Definition 5.6 (First-order Stochastic Dominance (FSD)). We say

that random variable 𝐴 has FSD over random variable 𝐵 if 𝐹𝐴 (𝑥) ≤
𝐹𝐵 (𝑥) ∀𝑥 , where 𝐹𝐴 (𝑥) and 𝐹𝐵 (𝑥) are the cumulative density func-

tions (CDFs) of 𝐴 and 𝐵 at value 𝑥 . We denote this as 𝐴 ≥𝐹𝑆𝐷 𝐵.

Remark. One way to think about this definition is that𝐴 ≥𝐹𝑆𝐷 𝐵

if the probability mass of 𝐴 lies to the right of that of 𝐵.

We now state the single state conservatism result and give its

proof.

Theorem 5.7 (LSS MoS and LSS MoS Trimming Implies LSS

Conservatism). LetM be a PA with MoS assumption ⪰𝐿𝑆𝑆
𝑀𝑜𝑆

. Assume
that there are no infinite paths throughM. Let𝜓 be an LTL safety prop-
erty. If we trimM according to the procedure detailed in Definition 5.5
for state 𝑠 to arrive at model M′, then 𝑃𝑟𝐿𝑆𝑆,𝑛M (𝜓 ) ≥𝐹𝑆𝐷 𝑃𝑟

𝐿𝑆𝑆,𝑛
M′ (𝜓 ).
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Proof. Let 𝑠 be a state in M. Assume that state 𝑠 has non-

deterministic transitions to states 𝑠1, 𝑠2, . . . , 𝑠𝑑

(𝑠, 𝛼1, [𝑠1
), . . . , (𝑠, 𝛼𝑑 , [𝑠𝑑 ) ∈ 𝛿

and that:

𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆 𝑠𝑑 , . . . , 𝑠𝑑−1

⪰𝑃𝑀𝐶
𝑀𝑜𝑆 𝑠𝑑

Now consider PAM′
formed by removing (𝑠, 𝛼1, [𝑠1

), . . . , (𝑠, 𝛼𝑑 , [𝑠𝑑−1
)

from 𝛿 .

Consider scheduler 𝜎 ∈ 𝑆𝑐ℎM. Now we generate its correspond-

ing scheduler in M′
, called 𝜎 ′, by requiring 𝜎 ′ to take action 𝛼𝑑

to state 𝑠𝑑 whenever it is in state 𝑠 . Effectively, we are saying that

of the 𝑑 choices that 𝜎 could make in state 𝑠 , 𝜎 ′ takes 𝛼𝑑 . So each

𝜎 ′ ∈ 𝑆𝑐ℎM′ has 𝑑 corresponding schedulers in 𝑆𝑐ℎM. It follows that

|𝑆𝑐ℎM | = 𝑑 ∗ |𝑆𝑐ℎM′ |.
Now we show that 𝑃𝑟𝜎M (𝜓 ) ≥ 𝑃𝑟𝜎

′
M′ (𝜓 ). By Lemma 5.2, we have:

𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (⋄𝑠)𝑃𝑟𝜎M(𝑠) (𝜓 )

𝑃𝑟𝜎
′

M′ (𝜓 ) = 𝑃𝑟𝜎
′

M′ (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎
′

M′ (⋄𝑠)𝑃𝑟𝜎
′

M′ (𝑠) (𝜓 )

Note that 𝜎 , 𝜎 ′ differ only in state 𝑠 andM has no self loops since

it only has finite paths. So:

𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) = 𝑃𝑟𝜎
′

M′ (𝜓&¬ ⋄ 𝑠) and 𝑃𝑟𝜎M (⋄𝑠) = 𝑃𝑟𝜎
′

M′ (⋄𝑠)

For the final two terms, we unroll one step of the models from

state 𝑠 . This one step takes model M to one of the following states:

{𝑠1, 𝑠2, . . . , 𝑠𝑑 } (determined by scheduler 𝜎) andmodelM′
to state 𝑠𝑑

(sinceM′
doesn’t have non-deterministic transitions to 𝑠1, . . . , 𝑠𝑑−1

).

By ⪰𝐿𝑆𝑆
𝑀𝑜𝑆

, 𝑃𝑟𝜎M(𝑠𝑑 )
(𝜓 ) ≤ 𝑃𝑟𝜎M(𝑠𝑖 ) (𝜓 ), 𝑖 = 1, . . . , 𝑑 − 1. Finally, since

M andM′
and 𝜎 and 𝜎 ′ differ only in state 𝑠 andM cannot loop back

to 𝑠 from 𝑠2, . . . , 𝑠𝑑−1
, it follows that 𝑃𝑟𝜎M(𝑠𝑑 )

(𝜓 ) = 𝑃𝑟𝜎′

M′ (𝑠𝑑 )
(𝜓 ). So

𝑃𝑟𝜎M (𝜓 ) ≥ 𝑃𝑟𝜎
′

M′ (𝜓 ).
Now draw some 𝜎1 ∼ 𝑈𝑛𝑖 𝑓 (𝑆𝑐ℎM). Let 𝜎 ′

1
be the corresponding

scheduler in 𝑠𝑐ℎM′ . It follows that 𝜎 ′
1
∼ 𝑈𝑛𝑖 𝑓 (𝑠𝑐ℎM′):

𝑃 (𝜎 ′
1
= 𝜎 ′) = 𝑃 (𝜎1 corresponds to 𝜎 ′) = 1

|𝑆𝑐ℎM |𝑑 =
1

|𝑆𝑐ℎM′ |

Now we apply LSS simultaneously toM andM′
.

ForM, we pick𝑛 schedulers uniformly𝜎1, . . . , 𝜎𝑛 ∼ 𝑈𝑛𝑖 𝑓 (𝑆𝑐ℎM),
compute each scheduler’s safety probability 𝑝𝑖 := 𝑃𝑟

𝜎𝑖
M (𝜓 ) and

return the smallest safety probability:𝑚𝑖𝑛𝑖=1,...,𝑛 (𝑝𝑖 ).
For M′

, we convert each 𝜎𝑖 into its corresponding 𝜎 ′
𝑖
∈ 𝑆𝑐ℎM′ ,

compute its safety probability 𝑝 ′
𝑖

:= 𝑃𝑟
𝜎′
𝑖

M′ (𝜓 ) and return the mini-

mum one:𝑚𝑖𝑛𝑖=1,...,𝑛 (𝑝 ′𝑖 ).
From earlier, we know that 𝑝𝑖 ≥ 𝑝 ′

𝑖
∀𝑖 = 1, . . . , 𝑛. It follows that

𝑚𝑖𝑛𝑖=1,...,𝑛 (𝑝𝑖 ) ≥ 𝑚𝑖𝑛𝑖=1,...,𝑛 (𝑝 ′𝑖 ). So with this shared sample space

of schedulers we always get a larger value from running LSS on M
thanM′

. Thus, the probability mass of 𝑃𝑟𝐿𝑆𝑆M (𝜓 ) lies to the right of
that of 𝑃𝑟𝐿𝑆𝑆M′ (𝜓 ). Thus, 𝑃𝑟𝐿𝑆𝑆M (𝜓 ) ≥𝐹𝑆𝐷 𝑃𝑟𝐿𝑆𝑆M′ (𝜓 ).

□

Themodel-wide LSSMoS trimming procedureworks by applying

the trimming procedure in Definition 5.5 to all states of the model.

Corollary 5.8. The model-wide LSS MoS trimming procedure is
conservative under Definition 4.2.

5.2.1 LSS Data Efficiency. As LSS is a sampling based method,

it has a trade-off between sample count and accuracy. Sampling

more schedulers produces more accurate LSS results. Intuitively,

the larger the set of schedulers for a PAM, the more schedulers LSS

should sample to get a reasonable probability estimate of 𝑃𝑟𝑚𝑖𝑛
M (𝜓 ).

Thus, reducing the number of schedulers when constructing M′

allows LSS to sample fewer schedulers. In our evaluation, we show

that our trimmings allow for better LSS results while using 10x

fewer schedulers than without trimming.

6 EVALUATION AND RESULTS
Our experimental evaluation had two goals: compare the scalabil-

ity/data efficiency of our abstractions and explore the extent to

which Definition 4.2 holds on small models
3
. We perform evalua-

tion on simulations of the two case studies described in Section 2.

For PMC we use the PRISM model checker [20] and for LSS we use

the MODEST model checker [2]. The code and models used can be

found at: https://github.com/earnedkibbles58/ICCPS_2022_MoS.

6.1 Setup: Data Collection and Modeling
6.1.1 AEBS. First, we setup the AEBS controller in the self-driving

car simulator CARLA [9], using a red Toyota Prius as the obstacle.

We performed two data collections: (i) constant-𝑣 runs to gather

image-distance data to construct PAMper, (ii) AEBS-controlled runs

to approximate the true value of 𝑃𝑟𝑛𝑜𝑐𝑜𝑙 .

For the former collection, we ran 500 simulations starting from

200m and obtained 180500 pairs (𝑑 , O). Model Mper contains the

probabilities of detection conditioned on the 10m-wide distance bin

and the past 3 low-level outcomes. For the latter collection, we ran

300 simulations of emergency braking starting at 160m and 20m/s,

with YoloNet perception and a 3-wide majority filter on top. 20 runs

out of 300 resulted in a crash, yielding a [0.04, 0.1] 95% confidence

interval (CI) for the true collision chance (i.e., 1 − 𝑃𝑟𝑛𝑜𝑐𝑜𝑙 ).

6.1.2 Water Tank. To derive a probabilistic model of the simulated

perception error with 𝐸𝑊 = 6, at each water level (from 1 to𝑇𝑆) we

ran 100 trials of the perception and recorded the counts of percep-

tion errors into 15 bins, 13 of which were of width 1, representing

errors from −6 to 6. Errors above 6 or below −6 got their own bins

as well, which represented the perception giving an output of 0 or

𝑇𝑆 , respectively. To summarize, the model ofMper was a categorical

distribution over the perception error with the following bins:

{0,𝑤𝑙 − 6,𝑤𝑙 − 5, . . . ,𝑤𝑙 + 5,𝑤𝑙 + 6,𝑇𝑆}

6.2 PMC Scalability and Accuracy
For each case study, we consider two different models: (i)Mint from

Section 3.1, (ii)M𝑃𝑀𝐶
tt

, which we form by applying the MoS-driven

trimming procedures from Definition 5.1.

6.2.1 AEBS. One experiment evaluates the accuracy-scalability

tradeoffs for a fixed initial state (160m, 20m/s) and differing dis-

tance interval sizes of the models. Figure 3 shows that M𝑃𝑀𝐶
tt

out-

performs Mint in terms of run time while maintaining empirical

conservatism. This shows that our MoS-enabled trimming shows

significant speed ups while maintaining empirical conservatism, as

3
Large models have too many schedulers to enumerate them.
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Figure 3: AEBS run times and safety probabilities for Mint (green
squares) andM𝑃𝑀𝐶

tt (red dots), and 95%CI for the simulated collision
chance (orange band). Each dot represents a different interval size
for Mint.

Figure 4: Comparison of PMC safety probabilities (left) and run
times (right) for models across different initial distances and veloc-
ities of Mint (green), M𝑃𝑀𝐶

tt (red) and M𝑃𝑀𝐶
ttneg (blue) models of the

AEBS example.

it returns a lower safety chance than the simulations, for a range

of model hyperparameters.

In the other experiment we fixed the distance interval size and

varied the initial conditions, shown in Figure 4. First,Mint scales

very poorly. It takes an order of magnitude longer to run than

M𝑃𝑀𝐶
tt

. Second, M𝑃𝑀𝐶
tt

returns similar safety probabilities to Mint.

Third, we computed a model using the negations of ⪰𝑑 and ⪰𝑣 ,

which we denote asM𝑃𝑀𝐶
ttneg

. This model returns very large safety

probabilities. This is further evidence that ⪰𝑑 and ⪰𝑣 are fairly

accurate, as taking their negations produces overly safe results.

6.2.2 Water Tank. We first fixed the initial water levels to be 50

(exactly half full) and varied the water level interval size of the

models. Figure 5 shows that the M𝑃𝑀𝐶
tt

outperforms Mint in terms

of run time while returning similar safety probabilities over a range

of hyperparameters.

We then fixed the water level interval size and varied the initial

conditions, shown in Figure 6. First,Mint scales very poorly, with

several models taking upwards of an hour to verify. M𝑃𝑀𝐶
tt

speeds

this by up to 2 orders of magnitude. Second, M𝑃𝑀𝐶
tt

returns very

similar safety probabilities toMint. Third,Mttneg returns really high

safety probabilities, which further indicates that ⪰𝑤 is an accurate

assumption.

Figure 5:Water tank PMC run times and overflow/underflow prob-
abilities forMint (green square) andM𝑃𝑀𝐶

tt (red dot). Each dot is for
a set of values of a model’s hyperparameters.

Figure 6: Comparison of PMC safety probabilities (left) and run
times (right) of Mint (green), M𝑃𝑀𝐶

tt (red) and M𝑃𝑀𝐶
ttneg (blue) models

for the water tank example.

Initial

Condition (d,v)

Mint and

10 Schedulers

M𝐿𝑆𝑆
tt

and

10 Schedulers

M𝐿𝑆𝑆
tt

and

1 Scheduler

(130,14) 0.991 0.919 0.962

(130,18) 0.962 0.802 0.831

(160,14) 0.993 0.919 0.943

(160,18) 0.966 0.802 0.846

Table 1: LSS Safety Probabilities for the AEBS system.

6.3 LSS Data Efficiency
For each case study, we consider two different models: (i)Mint from

Section 3.1, (ii) M𝐿𝑆𝑆
tt

, which we form by applying the MoS-driven

trimming procedure from Definition 5.5.

We kept the same distance and water level interval sizes as

before and ran LSS on a smaller range of initial conditions for both

abstractions. The safety probability of each scheduler was computed

to an absolute error of 0.05 with 0.8 confidence. We ran LSS using

10 scheduler samples on bothMint andM𝐿𝑆𝑆
tt

. In addition, we ran

LSS using 1 scheduler sample on M𝐿𝑆𝑆
tt

. For all cases, we ran 10

different trials of LSS and averaged the results. The AEBS results

are shown in Table 1 and Table 2 and the water tank results are

shown in Figure 7. TheM𝐿𝑆𝑆
tt

models give more conservative safety

probabilities with 10x fewer schedulers and, hence, 10x smaller run

times. This is because all the extra non-determinism in the Mint

models dilutes the scheduler sampling. Note thatM𝐿𝑆𝑆
tt

took around

the same time asMint when using an equal number of samples.
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Initial

Condition (d,v)

Mint and

10 Schedulers

M𝐿𝑆𝑆
tt

and

10 Schedulers

M𝐿𝑆𝑆
tt

and

1 Scheduler

(130,14) 171 201 15

(130,18) 603 179 11

(160,14) 203 250 17

(160,18) 608 228 12

Table 2: LSS Run Times (sec) for the AEBS system.

Figure 7: LSS safety probabilities (left) and run times (right) of wa-
ter tank models across different initial water levels for Mint and 10
schedulers (green), M𝐿𝑆𝑆

tt and 10 schedulers (red) and M𝐿𝑆𝑆
tt and 1

scheduler (orange).

6.4 Validating MoS Assumptions
We generated small Mint models for the AEBS and water tanks

model and enumerated every scheduler of both. We computed the

proportion of schedulers for which Definition 4.2 held for each pair

of states involved in the MoS trimming, thus quantifying the extent

to which our MoS assumptions held on these models.

6.4.1 AEBS. We kept the same discretization parameters as before

and used an initial distance of 9m and speed of 1.2m/s. Mint had

11664 schedulers and a minimum safety chance of 0.986. M𝑃𝑀𝐶
tt

had a safety chance of 0.990, so our MoS-trimming is not conser-

vative and the conjunction of ⪰𝑑 and ⪰𝑣 does not hold. However,

we want to examine how close this conjunction is to holding. So

we computed each state pair involved in the MoS-trimming proce-

dure detailed in Section 5.1, of which there were 17. Consider one

such pair (𝑠1, 𝑠2), with 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2. We then computed the safety

probability of the model when starting in both 𝑠1 and 𝑠2 for every

scheduler of the model and computed the proportion of schedulers

for which 𝑠1 gave a higher safety chance than 𝑠2. This amounts

to computing 𝑃𝜎∼𝑆𝑐ℎM

(
𝑃𝑟𝜎M(𝑠1) (𝜓𝑛𝑜𝑐𝑜𝑙 ) ≥ 𝑃𝑟𝜎M(𝑠2) (𝜓𝑛𝑜𝑐𝑜𝑙 )

)
.
4
We

denote this probability as 𝑝𝑠1,𝑠2
.

We applied this procedure to each of the 17 trimmed state pairs.

For 15 of them, 𝑝𝑠1,𝑠2
= 1. The other two had values of 0.5 and 0.656,

respectively. So ⪰𝑑 and ⪰𝑣 hold perfectly for the majority of the

state pairs. But for the pairs where it didn’t hold it was not very

close to holding. This is most likely due to those two state pairs

being near the AEBS control boundaries and echoes the intuitions

from the counterexamples, which is that ⪰𝑑 and ⪰𝑣 do not hold

near control and perception boundaries.

6.4.2 Water Tank. We used a model of a single water tank with a

max water level of 30 and the same 𝑇 and water level interval size

as before. Mint had 1024 schedulers and a minimum safety chance

4
If ⪰𝑤 held, then this proportion would be 1.

State 𝑠1 State 𝑠2 𝑝𝑠1,𝑠2

[5, 10] [0, 5] 1.0

[10, 15] [5, 10] 0.934

[15, 20] [10, 15] 0.813

[15, 20] [20, 25] 0.881

[20, 25] [25, 30] 1.0

Table 3: Probabilities of ⪰𝑤 holding over trimmed state pairs
of Mint.

of 0.261.M𝑃𝑀𝐶
tt

had a safety chance of 0.303. So our MoS-trimming

is not conservative and ⪰𝑤 does not hold. However, we want to

examine how close ⪰𝑤 is to holding. So we computed each state

pair involved in the MoS-trimming procedure from Section 5.1 used

to convertMint intoM𝑃𝑀𝐶
tt

, of which there were 5. Consider one

such pair (𝑠1, 𝑠2), with 𝑠1 ⪰𝑃𝑀𝐶
𝑀𝑜𝑆

𝑠2. We then computed the safety

probability of the model when starting in both 𝑠1 and 𝑠2 for every

scheduler of the model and calculated the proportion of schedulers

for which 𝑠1 gave a higher safety chance than 𝑠2. This amounts to

computing 𝑃𝜎∼𝑆𝑐ℎM

(
𝑃𝑟𝜎M(𝑠1) (𝜓flow) ≥ 𝑃𝑟𝜎M(𝑠2) (𝜓flow)

)
.

We applied this process for each of the 5 state pairs and the results

are shown in Table 3. This shows that although ourMoS-trimming is

not conservative, ourMoS assumption ⪰𝑤 holds formost schedulers

and state pairs. We see that MoS holds over more schedulers near

the extremes of the water tank. This also demonstrates why the

MoS-trimming is so conservative for LSS, since most of the trimmed

schedulers are in fact overly optimistic.

7 RELATEDWORK
Many works have applied statistical analysis methods to proba-

bilistic systems with non-determinism. As previously mentioned,

[24] introduced LSS and improved upon it with smart sampling

[11]. These LSS techniques have been implemented in the MODEST

model checker [16]. These methods have been applied to the analy-

sis of timed probabilistic models in [6, 17] and rare event detection

[1]. Reinforcement learning techniques have also been employed

to find min schedulers of markov decision processes [18].

Previous works have addressed compositional reasoning for

probabilistic models, such as extending notions of simulation and

bisimulation to PAs [15, 29, 30]. These relations are preserved under

parallel composition, but they are too fine-grained for composi-

tional verification. Another approach uses the notion of trace dis-

tribution inclusion (distributions over traces of automata actions)

for compositional reasoning [28], but this relation is not preserved

under parallel composition. Other works target more restrictive

modeling formalisms than PAs, such as reactive modules [7] and

probabilistic I/O systems [4]. Another work [14] automatically

generates assumptions for composition. However, it forbids the

composed model from having nondeterministic transitions, which

does not work with the abstractions presented in this paper.

The most conceptually similar topic to our MoS assumptions is

sensitivity analysis of dynamical systems, which aims to quantify

how changes in system initial conditions affect system traces [8].

Reasoning about the safety of autonomous vehicles has been

studied from other perspectives aswell. The Responsibility-Sensitive

Safety (RSS) model [19] uses physics-based safety analysis for prov-

able safety in different driving scenarios for autonomous vehicles.
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RSS does not consider ML-based perception models in the closed

loop of their autonomous systems. Finally, researchers have inves-

tigated the use of falsification to find perception outputs that cause

unsafe system behaviors [10].

8 CONCLUSION
This paper introduced an abstraction approach for scalable prob-

abilistic model checking and data efficient lightweight scheduler

sampling of probabilistic automata. Specifically, we use intuitive

assumptions of monotonic safety to remove non-determinism from

PAs. When such assumptions hold, they lead to provably conserva-

tive abstractions. Even when these assumptions do not perfectly

hold, MoS-based simplifications remain empirically conservative.

We demonstrated these MoS-driven trimmings on case studies of a

self-driving car and a water tank. Future work includes analytically

bounding conservatism loss from MoS violations, extending the

MoS trimming techniques to distributions of states, and exploring

how our notion of MoS relate to sensitivity analysis for dynamical

systems. More generally, we see the development of abstractions

suitable for LSS as a promising area to explore.
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A APPENDIX
A.1 Counterexamples to Monotonic Safety in

AEBS
In all counterexamples, we set 𝜏 = 1𝑠 and window size 𝑁𝐹 = 1. We

adopt the notation 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 | 𝑑, 𝑠) as a shorthand for 𝑃𝑟M (𝑑, 𝑠) (𝜓𝑛𝑜𝑐𝑜𝑙 ).

Counterexample 1. Assumption ⪰𝑑 does not hold in the AEBS
with one BP and distance-dependent perception for shift Δ = (1𝑚, 0)
when 𝐵 = 10𝑚/𝑠2, 𝑣0 = 11𝑚/𝑠, 𝑑0 = 13𝑚, and 𝑃𝑟𝑑𝑒𝑡 (𝑑) = 1− ⌈𝑑⌉/20.

Proof. We set 𝑠𝑏 = (13, 11) and 𝑠𝑎 = (14, 11). Then we calculate

as follows.

𝑃𝑟M(𝑠𝑎) (𝜓𝑛𝑜𝑐𝑜𝑙 ) =
𝑃𝑟𝑑𝑒𝑡 (14) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |3, 1) + (1 − 𝑃𝑟𝑑𝑒𝑡 (14)) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |3, 11)︸              ︷︷              ︸

=0

=

𝑃𝑟𝑑𝑒𝑡 (14) ∗ (𝑃𝑟𝑑𝑒𝑡 (3) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |2, 0)︸            ︷︷            ︸
=1

+ (1 − 𝑃𝑟𝑑𝑒𝑡 (3)) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |2, 1)︸            ︷︷            ︸
=𝑃𝑟𝑑𝑒𝑡 (2)

) =

𝑃𝑟𝑑𝑒𝑡 (14) ∗ (𝑃𝑟𝑑𝑒𝑡 (3) + (1 − 𝑃𝑟𝑑𝑒𝑡 (3)) ∗ 𝑃𝑟𝑑𝑒𝑡 (2)) =
𝑃𝑟𝑑𝑒𝑡 (14) ∗ (𝑃𝑟𝑑𝑒𝑡 (3) + 𝑃𝑟𝑑𝑒𝑡 (2) − 𝑃𝑟𝑑𝑒𝑡 (3) ∗ 𝑃𝑟𝑑𝑒𝑡 (2)).

𝑃𝑟M(𝑠𝑏 ) (𝜓𝑛𝑜𝑐𝑜𝑙 ) =
𝑃𝑟𝑑𝑒𝑡 (13) ∗ 𝑃𝑟 (𝑠𝑎𝑓 𝑒 |2, 1) + (1 − 𝑃𝑟𝑑𝑒𝑡 (13)) ∗ 𝑃𝑟 (𝑠𝑎𝑓 𝑒 |2, 11)︸            ︷︷            ︸

=0

=

𝑃𝑟𝑑𝑒𝑡 (13) ∗ (𝑃𝑟𝑑𝑒𝑡 (2) ∗ 𝑃𝑟 (𝑠𝑎𝑓 𝑒 |1, 0)︸          ︷︷          ︸
=1

+

(1 − 𝑃𝑟𝑑𝑒𝑡 (2)) ∗ 𝑃𝑟 (𝑠𝑎𝑓 𝑒 |1, 1)︸          ︷︷          ︸
=0

) =

𝑃𝑟𝑑𝑒𝑡 (13) ∗ 𝑃𝑟𝑑𝑒𝑡 (2).

If we set 𝑃𝑟𝑑𝑒𝑡 (𝑑) = 1 − ⌈𝑑⌉/20 (i.e., the detection probability

grows linearly from 0% at 20 meters to 100% at 0 meters), then the

above falsifies MoS:

𝑃𝑟M(𝑠𝑏 ) (𝜓𝑛𝑜𝑐𝑜𝑙 ) = 0.315 > 0.2955 = 𝑃𝑟M(𝑠𝑎) (𝜓𝑛𝑜𝑐𝑜𝑙 )

P.S. This inequality is reversed for less steep detection curves

like 1 − ⌈𝑑⌉/40. □

The second counterexample shows that going at a faster speed

may be beneficial because it leads to closer distances, which result

in stronger braking.

Counterexample 2. Assumption ⪰𝑣 does not hold in the AEBS
with multiple BPs and distance-independent perception for shift Δ =

(0,−1𝑚/𝑠) when𝐵(𝑑) = [10𝑚/𝑠2 if 𝑑 ≤ 11𝑚; 3𝑚/𝑠2 otherwise], 𝑣0 =

9𝑚/𝑠, 𝑑0 = 20𝑚, and 𝑃𝑟𝑑𝑒𝑡 = 0.5.

Proof. We set 𝑠𝑏 = (20, 9) and 𝑠𝑎 = (20, 8). Then we calculate as

follows:

𝑃𝑟M(𝑠𝑎) (𝜓𝑛𝑜𝑐𝑜𝑙 ) =
𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |11, 6) + (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |11, 9) =
𝑃𝑟𝑑𝑒𝑡 ∗ (𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |5, 0)︸            ︷︷            ︸

=1

+(1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |5, 6)︸            ︷︷            ︸
=0

)+

(1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ (𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |2, 0)︸            ︷︷            ︸
=1

+ (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |2, 9)︸            ︷︷            ︸
=0

=

(𝑃𝑟𝑑𝑒𝑡 )2 + (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟𝑑𝑒𝑡 = 𝑃𝑟𝑑𝑒𝑡

𝑃𝑟M(𝑠𝑏 ) (𝜓𝑛𝑜𝑐𝑜𝑙 ) =
𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |12, 5) + (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |12, 8) =
𝑃𝑟𝑑𝑒𝑡 ∗ (𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |7, 2) + (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |7, 5)︸            ︷︷            ︸

=𝑃𝑟𝑑𝑒𝑡

)+

(1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ (𝑃𝑟𝑑𝑒𝑡 ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |4, 5)︸            ︷︷            ︸
=0

+ (1 − 𝑃𝑟𝑑𝑒𝑡 ) ∗ 𝑃𝑟 (𝜓𝑛𝑜𝑐𝑜𝑙 |4, 8)︸            ︷︷            ︸
=0

= · · · =

𝑃𝑟2

𝑑𝑒𝑡
(1 + 2𝑃𝑟𝑑𝑒𝑡 − 3𝑃𝑟2

𝑑𝑒𝑡
+ 𝑃𝑟3

𝑑𝑒𝑡
)

It can be shown that for any 0 < 𝑃𝑟𝑑𝑒𝑡 < 1, 𝑃𝑟𝑑𝑒𝑡 > 𝑃𝑟2

𝑑𝑒𝑡
(1 +

2𝑃𝑟𝑑𝑒𝑡−3𝑃𝑟2

𝑑𝑒𝑡
+𝑃𝑟3

𝑑𝑒𝑡
). For example, for 𝑃𝑟𝑑𝑒𝑡 = 0.5, 0.5 > 0.34375.

Thus, the above falsifies MoS:

𝑃𝑟M(𝑠𝑏 ) (𝜓𝑛𝑜𝑐𝑜𝑙 ) > 𝑃𝑟M(𝑠𝑎) (𝜓𝑛𝑜𝑐𝑜𝑙 )

□

A.2 Counterexamples to Monotonic Safety in
Water Tanks

Counterexample 3. Assumption ⪰𝑤 does not hold for a water
tank system with 𝐽 = 1,𝑇𝑆 = 100, 𝑜𝑢𝑡 = 3, 𝑖𝑛 = 40,𝑇 = 4, 𝑃𝑟 (�̂� =

0) = 0.4, and 𝑃𝑟 (�̂� = 𝑇𝑆) = 0.6,𝑤 = 10, and Δ𝑤 = 30.

Proof. For state 𝑠𝑏 = 10, we compute the chance of underflow

as 0.64 = 0.1296, and the chance of overflow is the chance of 3

or 4 successes in Binomial distribution 𝐵𝑖 (4, 0.4), which is 0.1792.

So 𝑃𝑟M(𝑠𝑏 ) (𝜓flow) = 0.6912. For state 𝑠𝑎 = 40, the chance of un-

derflow is 0. The chance of overflow is the chance of 2+ successes

in Binomial distribution from the binomial distribution 𝐵𝑖 (4, 0.4),
so 𝑃𝑟M(𝑠𝑎) (𝜓flow) = 0.4752. Thus, 𝑠𝑎 ⪰𝑤 𝑠𝑏 , but 𝑃𝑟M(𝑠𝑎) (𝜓flow) <
𝑃𝑟M(𝑠𝑏 ) (𝜓flow). □

A.3 Proof of Trace Decomposition Lemma
Lemma A.1 (Satisfaction Probability by Trace Decomposi-

tion). LetM be a PA. Assume that there are no infinite paths through
M. Let 𝜎 be a scheduler ofM. Then

𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (⋄𝑠)𝑃𝑟𝜎M(𝑠) (𝜓 )
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Proof. We can split up the traces throughM by taking the ones

that don’t pass through state 𝑠 and the ones that do, as these are

two disjoint sets. So

𝑃𝑟𝜎M (𝜓 ) = 𝑃𝑟𝜎M (𝜓&¬ ⋄ 𝑠) + 𝑃𝑟𝜎M (𝜓& ⋄ 𝑠) (7)

Now we examine the 𝑃𝑟𝜎M (𝜓& ⋄ 𝑠) term. Note that 𝜓 is a safety

property, so it can be expressed as □¬𝜌 . First, we decompose this

term using the chain rule for probabilities:

𝑃𝑟𝜎M (𝜓& ⋄ 𝑠) = 𝑃𝑟𝜎M (⋄𝑠)𝑃𝑟𝜎M (𝜓 | ⋄ 𝑠) (8)

We now focus on the 𝑃𝑟𝜎M (𝜓 | ⋄ 𝑠). This asks for the measure of

the traces which satisfy 𝜓 among the traces which pass through

𝑠 . But by the construction of M every state which falsifies 𝜓 (i.e.

every state for which 𝜌 is true) is a sink state, so it is impossible

for a trace through M to falsify 𝜓 and then pass through 𝑠 . Thus

we have that:

𝑃𝑟𝜎M (𝜓 | ⋄ 𝑠) = 𝑃𝑟𝜎M(𝑠) (𝜓 ) (9)

Substitute Equation (8) and Equation (9) into (7) to complete the

proof.

□
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