
Software Engineering for Smart Cyber-Physical Systems:

Challenges and Promising Solutions
Tomas Bures1, Danny Weyns2, Bradley Schmerl3, Eduardo Tovar4 (workshop organizers)

Eric Boden5, Thomas Gabor6, Ilias Gerostathopoulos7, Pragya Gupta8, Eunsuk Kang9, Alessia
Knauss10, Pankesh Patel11, Awais Rashid12, Ivan Ruchkin3, Roykrong Sukkerd3, Christos Tsigkanos13

(contributing participants)

1Charles University Prague, 2Katholieke Universiteit Leuven & Linnaeus University, 3Carnegie Mellon University, 4CISTER-
ISEP, 5University of Paderborn, 6LMU München, 7TU München, 8fortiss, 9Massachusetts Institute of Technology, 10Chalmers

University of Technology, 11ABB Corporate Research, 12Lancaster University, 13Politecnico di Milano

bures@d3s.mff.cuni.cz, danny.weyns@kuleuven.be, schmerl@cs.cmu.edu, emt@isep.ipp.pt,
eric.boden@uni-paderborn.de, thomas.gabor@ifi.lmu.de, ilias.gerostathopoulos@tum.de,

gupta@fortiss.org, eunsuk.kang@berkeley.edu, alessia.knauss@chalmers.se,
pankesh.patel@in.abb.com, a.rashid@lancaster.ac.uk, iruchkin@cs.cmu.edu, rsukkerd@cs.cmu.edu,

christos.tsigkanos@polimi.it

ABSTRACT

Smart Cyber-Physical Systems (sCPS) are modern CPS systems that are

engineered to seamlessly integrate a large number of computation and

physical components; they need to control entities in their environment

in a smart and collective way to achieve a high degree of effectiveness

and efficiency. At the same time, these systems are supposed to be safe

and secure, deal with environment dynamicity and uncertainty, cope

with external threats, and optimize their behavior to achieve the best

possible outcome. This “smartness” typically stems from highly

cooperative behavior, self-awareness, self-adaptation, and self-

optimization. Most of the “smartness” is implemented in software,

which makes the software one of the most complex and most critical

constituents of sCPS. As the specifics of sCPS render traditional

software engineering approaches not directly applicable, new and

innovative approaches to software engineering of sCPS need to be

sought. This paper reports on the results of the Second International

Workshop on Software Engineering for Smart Cyber-Physical Systems

(SEsCPS 2016), which specifically focuses on challenges and

promising solutions in the area of software engineering for sCPS.

Keywords
Software engineering, cyber-physical systems

1. INTRODUCTION
Cyber-Physical Systems (CPS) are “engineered systems that are built

from, and depend upon, the seamless integration of computational and

physical components” [1]. With the proliferation of smart embedded

and mobile devices, CPS are becoming large-scale pervasive systems,

which combine various data sources to control real-world ecosystems

(e.g., intelligent traffic control) [2,3,4]. Modern CPS have to deal

effectively with environment dynamicity, control their emergent

behavior, be scalable and tolerant to threats, hence CPS have to be

smart (sCPS).

Compared to traditional embedded systems, i.e. hardware-intensive

systems with well-defined interfaces and boundaries delivering specific

services to their end-users often under stringent reliability and safety

requirements, sCPS are more interconnected and more dependent on

software for their operation. Car infotainment products, for instance,

have reached the size of multiple millions lines of code. This

complexity alone already calls for systematic software engineering (SE)

models, methods, and processes for building such sCPS. At the same

time, sCPS feature a number of specifics that render traditional SE

approaches (e.g. component-based modularization, simulation-based

validation) not directly applicable. These specifics include the blurring

boundaries between hardware and software, large scale and complexity,

the role of end-users, inherent uncertainty, open-endedness, locality,

etc. What is needed are innovative approaches that jointly reflect and

address the specifics of such systems.

2. SESCPS WORKSHOP
The SEsCPS workshop series1, part of ICSE, aims at addressing this

gap in software engineering for sCPS by looking at the specifics of

sCPS, along with opportunities and challenges tied to them. The

workshop brings together academics, practitioners, and trainers from

several disciplines with the overall objectives: (i) to increase the

understanding of problems of Software Engineering (SE) for sCPS, (ii)

to study the underlying foundational principles for engineering sCPS,

and (iii) to identify and define promising SE solutions for engineering

of sCPS.

In this report, we summarize the findings of the 2nd edition of the

workshop, held on May 16th, 2016 in Austin, Texas in conjunction with

ICSE 2016.

3. WORKSHOP STRUCTURE
Based on the interests shown by participants at the previous edition of

the workshop [5] and research interests shown at related venues, the

special themes of SEsCPS’16 were: (1) alignment of disciplines for

engineering sCPS, (2) uncertainty and human factors, and (3) reference

problems. Around these themes, the workshop strived to build

understanding of sCPS and provide a basis for holistically addressing

the SE challenges brought by sCPS.

The second edition of the workshop attracted 17 submissions, out of

which 7 were accepted as full papers and 2 as position and future-trends

papers. In total, around 25 participants attended the workshop. The

workshop started with a keynote. The rest of the morning was devoted

to presentations of accepted papers, grouped in three themes as

overviewed in the next section. The whole afternoon of the workshop

was devoted to discussion in breakout groups, where participants

discussed focused topics of SE for smart CPS. A plenary report session

concluded the workshop.

4. KEYNOTE
The keynote was delivered by Eric Bodden (University of Paderborn,

Germany), who focused in his talk on the important subject of security

1 http://d3s.mff.cuni.cz/conferences/sescps2016

DOI: 10.1145/3089649.3089656
http://doi.acm.org/10.1145/3089649.3089656

ACM SIGSOFT Software Engineering Notes Page 19 April 2017 Volume 42 Number 2

of sCPS. He highlighted that the high degree of connectivity of sCPS

renders them vulnerable to a whole range of new security attacks. He

argued throughout the talk that sCPS so far are insecure for two main

reasons. First, because of a lack of integrated perspective on the

inherent complexity of security mechanisms that take into account both

software and hardware vulnerabilities. Second, because the companies

behind the inception and engineering of innovative sCPS currently lack

competence in software engineering, since they were never software

companies, but car makers, home and industrial electronics

manufacturers, and telecom equipment and services providers.

5. WORKSHOP THEMES
The workshop presentations provided a cross-cutting view of the

software engineering challenges related to sCPS and potential

approaches to address the challenges. The presentations were organized

into the three themes overviewed below.

5.1 Formal Modeling and Planning
The first theme of the workshop was concerned with formal modelling

and planning of sCPS. sCPS are typically at least partly including

critical infrastructures (e.g. smart mobility, smart grids, etc.). As such,

formal modeling techniques are crucial to derive guarantees pertaining

to sCPS and provide abstractions needed to investigate the potential

behavior of sCPS. Being subject to a large degree of uncertainty, sCPS

typically combine guarantees with graceful degradation and planning to

control guarantees and optimality of their behavior. This brings

important research questions related to how to model sCPS (including

abstractions and semantics) and how to tie these models to guarantees

and planning.

These topics were targeted by three presentations. Christos Tsigkanos

argued that Building Information Models, the de facto standard for

specifying complex information about building infrastructures, can also

be extended for the specification of cyber-physical aspects. By

providing formal static and dynamic semantics of the cyber-physical

spaces they induce in terms of topological concepts it is possible to

support many forms of advanced analyses typically performed in

software engineering. Pragya Kirti Gupta presented a formal approach

for calculating guarantees for the objective of maximizing availability

and survivability using graceful degradation. The model represented

formal specification of the physical entities and the constraints under

which these physical entities must operate. The case study of a

microgrid operating in an island mode was analyzed. The work

showcased the use of model-based development approach in controlling

and managing CPS at large. Roykrong Sukkerd proposed a multi-scale

temporal planning approach for state-based planning to control the

complexity of employing both the required fidelity of time

discretization of a problem domain, as well as a long planning horizon

that enables planning to yield closer-to-optimal solutions. A

discretization scheme was used so that the size of time lattice increases

with time, leveraging the fact that prediction uncertainty of the

environment increases with time and thus there is less precision of time

of occurrences of far-future events.

5.2 Safety and Security
The second theme discussed at the workshop was safety and security.

As sCPS will be more and more immersed into everyday life, the

requirements on their safe operation, one that does not jeopardize lives,

will only increase. At the same time, solving the security challenges

imposed by sCPS, related to both old and new attacks, will be a major

issue in wide-spread adoption of such systems.

These topics were targeted by four presentations. Eunsuk Kang

presented a design-time approach for automatically generating security

attacks on a CPS using the Alloy formal modeling and analysis tool. He

described an application of this approach to discover real attacks on a

fully functional water treatment testbed at the Singapore University of

Technology and Design (SUTD). Charles Walter presented a wearable

adaptation management application to prevent attackers from stealing

private information by eavesdropping on Bluetooth communication.

Since the targeted wearables connect with a phone as the base station, a

phone app was created that intelligently adapts the level of security

based on data from every connected device and the phone. This

approach opens the possibility for learning user needs for security and

providing a mechanism to update policies as the user interacts with the

security awareness application. Alessia Knauss presented first results

from their investigation on the state-of-the-art and future trends in

testing critical CPS on the example of active safety systems. The results

were based on four focus groups with 11 practitioners from Sweden and

differentiate between the original equipment manufacturer (OEM) and

supplier point of view. The results underline the current support of

major testing processes, however, there is a clear need to develop

support for the testing of more complex scenarios in realistic settings.

Furthermore, the degree of automation of testing needs to be increased

to support repeatability and more effective test resource usage. Awais

Rashid asked if the human-in-the-loop is indeed the weak link regarding

security incidents, highlighting the role of latent design conditions in

impacting operators’ perceptions of adversarial behavior in cyber-

physical systems. He then discussed the characteristics of smart CPSs—

namely, their dynamically aggregated nature, emergent behavior and

multi-stakeholder environments—that make it particularly challenging

to address the impact of their inherently emergent design on operators’

perceptions of security events.

5.3 Frameworks
Since sCPS are large complex systems with large codebases, adhering

to certain rules or following certain guidelines can facilitate their

software development. Such rules or guidelines typically constrain the

software developers in their creative process; however, the conventions

that are followed produce understandable, maintainable, modular, and

extensible software. Software development rules and guidelines are

typically grouped together into component models, patterns,

architectural styles and frameworks.

This topic was targeted by the last two presentations. Pankesh Patel

proposed a development framework that segregates CPS development

concerns, provides a set of modelling languages to specify them, and

integrates automation techniques to parse these modelling languages.

Thomas Gabor presented a taxonomy of challenges to be faced when

integrating autonomous decision making into the development cycle of

future sCPS, allowing to analyze changes to be made to current

development processes.

6. OPEN RESEARCH TOPICS
The whole afternoon of the workshop was allocated to breakout groups

that focused on selected topics from the morning presentations. In total,

there were four groups, each focusing on one of the topics selected for

discussion: “Software Engineering Process for sCPS”, “Emergent

Designs”, “Consequences of Smartness and Security”, “Should

Software Provide Security to Control?” In the rest of the section, we

report on the findings of each breakout group in turn.

6.1 Emergent Designs
The first breakout group focused on the research trends in sCPS. sCPS

points to complex systems that not only control the physical entities, but

also coordinate various business processes [7]. Architectural design

strategies have been suggested to create platforms for sCPS [8]. This

has given a new impetus for research in machine learning, architectural

design, smart user interfaces, recommender systems etc. According to

the report by Gartner, emerging technologies in 2016 such as machine

learning, software-defined security, IoT platforms, micro data centers

etc. are at the peak of the hype cycle [9].

The group discussion was around the clarification of the terms “cyber-

physical” and “smartness”. In order to define these terms, key topics

ACM SIGSOFT Software Engineering Notes Page 20 April 2017 Volume 42 Number 2

that emerged were uncertainty and the representation of the

environment.

Uncertainty or dealing with what is unknown largely depends on the

representation of all the factors, which affect the functioning of the

system. Therefore, it is important to know the functionalities, the

structure and the workflow of the system internal to it. In other words,

when using a model-based approach, the model must capture the data

flows, functionalities etc. Requirements must be explicitly defined. It

was agreed upon that even if the objectives and the functionalities were

clearly defined, the environment in which the system is running is

equally important. The changes within the system in turn affect the

environment. Challenges of capturing the unknowns of the environment

that affect the system largely remain open research. Therefore, it totally

justifies the research trend we see in emerging technologies that focuses

on maximizing the data provisioning and knowledge extraction

algorithms.

It was also discussed that the clarification of “smartness” could only be

possible when the expectations from complex system such as energy

system, autonomous vehicle, and smart industry are clearly defined. In

other words, the requirements and specification of the complex system

must be defined properly and completely. The detection of conflicts

amongst the requirements of complex systems that operate

simultaneously remains a research challenge. For example, charging the

autonomous vehicle using Electric Vehicle (EV) charging stations in a

smart city requires clarity of the requirements related to EV charging

stations, autonomous vehicles energy requirement, layout and design of

the city that provides energy to the charging stations.

Software engineering practices can help in analyzing requirements,

defining architectures that allow interoperability and checking for

conflicts between complex systems.

In this context, challenges can be categorized as following;

 Adaptation and evolution in sCPS.

 “Uncertainty” and representation of environment.

sCPS are expected to adapt in certain situations. These adaptations

might involve changes in the structure or just fine-tuning certain

parameters. The major challenges and open research areas pertaining to

adaptation are:

1. How to identify the missing functionalities in the continuously

evolving system?

2. How the workflow will evolve if adaptation is introduced by

making structural changes?

3. How to design the evaluation platforms that analyze and

compare the initial and adapted design?

4. What are the metrics required to compare the initial design with

the evolved design?

5. How to recognize if a change is an opportunity to adapt or is

loss of functionality?

6.2 Consequences of Smartness and Security
The second breakout group focused on the interplay of smartness and

security, based on the observation that smartness typically involves

more complex functionality and more complex interactions, which, in

turn, increases the potential attack surface and thus has a negative effect

on security.

Connecting to the keynote by Eric Bodden, the group started by

clarifying the terms and scope of smartness and sCPS. The group

identified smartness as: “being connected and able to act with partial

autonomy based on own decision making while cooperating and

coordinating with others”. sCPS were then seen as CPS exhibiting a

significant degree of smartness, which implies that sCPS (as the

collection of multiple distributed and partially autonomous cooperating

nodes) take decisions on their own and exhibit self-* properties.

The ability to take own decisions is not binary. It rather makes a

continuous scale where some class of decisions can be taken

autonomously, whereas another class of decisions may require approval

or incentive by a human stakeholder. Consequently, even the

“smartness” of sCPS is to be seen as a continuum (as opposed to

classifying some CPS as “smart” and some others as “dumb”).

Having established the common understanding, the group focused on

security related issues connected with smartness. Apart from the

problem of increasing the potential attack surface, an important security

problem stems from the sCPS’s ability to make autonomous decisions.

This makes it possible to forge attacks that impact a system’s sensing

and self-awareness, thus forcing it into making a wrong decision. This

makes it possible to impact the system even without breaching into its

control functions. Similar problems happen even in systems controlled

by human operators (as discussed during the presentation of Awais

Rashid), however sCPS are more vulnerable due to their inability to

reflect on potential decisions from the perspective of the “common

sense.”

The smartness does not introduce only problems for security, but can be

seen also as an opportunity to implement mechanisms strengthening the

security. As smartness allows the system to introspect and reason about

its environment (including potential security threats), the system can

protect itself. An existing example of this is the moving target defense

strategy. Also, thanks to its high degree of autonomy, the system

requires fewer inputs from human operators. The system can essentially

control its behavior and system boundary from inside. This reduces the

possibility of attacks compromising the channel and the credentials via

which the operator accesses the system.

Generalizing these observations, it is expected that sCPS may enable

new types of attack patterns that we do not currently know.

Nevertheless, they may be somehow latent in existing attacks, thus

forming a kind of “unknown knowns” [6]. The smartness, however,

may make the system more resilient. Here, the pertinent question is how

we could exploit the smartness in strengthening the security. The role of

software engineering in this is critical, as it should make it possible to

reason about security and smartness in a systematic way. Disciplined

software engineering methods needs to propel the ability to reason

about the system as a whole and seamlessly incorporate defense

strategies specifically tailored towards the vulnerabilities of sCPS.

An interesting example was drawn from the keynote. In 2011, there was

a hack attempt targeting Lockheed Martin. Instrumental in the attack

was the ability of the attacker to compute access codes generated by

SecurID tokens used in two-factor authentication. In order to compute

the codes, the attackers previously compromised the servers of RSA

Security (the manufacturer of the SecurID tokens) and obtained seeds

used by the tokens to generate the access codes. Among others, this

story shows that under certain circumstances the security-related system

boundary of CPS can be effectively larger than originally assumed. In

this case, due to the chain of trust, the security-related system boundary

of Lockheed Martin in some sense also included the servers of RSA

Security. This pattern can be found in many other systems in nowadays

interconnected world. Here, the smartness featured by sCPS could

actually make it possible to shrink the system boundary back to units of

manageable size, which would be able to autonomously reason about

actions performed with them and protect themselves against an attack.

In addition to the topics discussed above, the group further identified a

number of important research questions / challenges listed (in no

intentional order) below:

 How does one measure and quantify security?

ACM SIGSOFT Software Engineering Notes Page 21 April 2017 Volume 42 Number 2

 How to figure out that the system has been compromised and

how to react to it, especially by reactions that cannot be easily

guessed by an attacker?

 How do we know what the realistic settings are if the relevant

systems do not exist yet? Here, a big problem is the current lack

of large sCPS testbeds.

 How to coordinate security behavior of multiple sCPS and how

to cope with the potential lack of the global perspective?

Obviously, the smarter the sCPS are, the more difficult this is.

Security should be a joint effort of multiple systems, but

adaptation of one system may easily compromise guarantees

and assumptions of other systems. This leads to an important

issue of compositionality of security guarantees.

6.3 Should Software Provide Security to Control?
The third breakout group focused on a question phrased in perhaps an

unusual way, “should software provide security to control?”

The goal of the phrasing was to challenge the assumption that security

is a passive quality designed upfront for the whole system (which

includes control algorithms and other software). As the question

suggests, some parts of the system (namely, software) can play an

active role in providing intelligent security, particularly in systems built

upon control mechanisms.

Taken to the security context of sCPS, the dichotomy between

“software” and “control” becomes unsuitable for two reasons:

1. There is no clear separation between “control” and “software”.

If we understand control narrowly (in a control

theoretical/engineering sense), it has been increasingly

implemented in software over the last decade. If we understand

control broadly, a lot of software has some control function in

it.

2. Security is a system-wide quality—not a particular functional

requirement. We cannot say that any specific component

provides security for the system. Instead, security depends on

how parts of the system come together and interact with a

particular environment. Even when some components have

active security functions (e.g., moving target defense), security

reasoning and evaluation needs to take the whole system into

account.

Let us then understand the interplay between control, security, and

software in sCPS better. Consider a system that uses classic control as a

functional skeleton that interacts with multiple physical processes. On

top of that, coordination software weaves together these control loops to

ensure the satisfaction of system qualities, including security. This

group’s discussion focused on how to improve engineering of such

secure sCPS. In contrast, the last subsection discusses engineering for

sCPS in general, and the previous subsection addresses the topic of

smart decision-making for security. In the remainder of this subsection,

we explore how security engineering of sCPS needs to differ from

security engineering of “pure software” systems and classic control

systems.

Our starting question hints that classic control is often not prepared to

deal with security challenges in diverse and rapidly changing

environments. In part, this deficiency is due to control’s focus on

overcoming random failures (caused by noise and natural processes).

Security engineering, in contrast, needs to deal with intentional

intrusions. Such intrusions can upset classic control that does not expect

input errors to deviate from the normal distributions. This weakness

gives rise to difficult-to-prevent sensor spoofing attacks, such as the one

carried out on Jeep’s GPS [7].

Another challenge in sCPS, both for classic control and cybersecurity, is

the increased scope and scale of systems. Now systems include not only

software and individual physical processes, but also groups of

interrelated physical processes, humans, and other smart systems. This

diverse context creates ample opportunities for lateral movement of the

attacker, who can create attack chains switching between compromising

software (e.g., with an exploit), compromising a physical process (e.g.,

with sensor spoofing), to compromising a human (e.g., with phishing).

Another difference for security in sCPS is smartness – the system’s

ability to learn and respond intelligently in new contexts. We

distinguished two degrees of smartness. The first-degree smartness is

existence of intelligent end-user devices that coordinate with each other.

This smartness creates many new attack surfaces, and is a great security

challenge. The second-degree smartness means that the system

deliberately learns and acts on its smart end-user devices. Often, this

smartness is considered beneficial to security since it makes intelligent

decisions to maintain security at run time (as discussed in the previous

section). However, second-degree smartness comes with challenges of

its own. Automated learning can be misled by attackers into overfitting

to a specific solution, or disrupted to prevent learning. In some way, it

seems that no matter how much smartness is added, security engineers

will always be one step behind attackers: smartness of degree n-1

introduces vulnerabilities that are patched up by smartness of degree n,

but that smartness comes with its own vulnerabilities, requiring yet

another level, and so on.

The group discussed two examples of learning attacks. The first attack

is an attack on modes in learning. Suppose a system has several

behavioral models, pertaining to criticality or safety. Each mode

requires separate learning of acceptable behaviors. Such a system can

be disrupted if an attacker finds a way to trigger mode switches, thus

preventing each mode’s learning to be reset and never accumulate

enough continuous data to behave appropriately. The second attack is

an attack on historical records. In this attack, the attacker would

compromise the historical record of the system’s operation, or the

component that creates that record. After that, no further escalation of

privilege may be needed: the attacker can lead the system into a desired

behavior by tweaking the historical records, which make up the training

set for the system’s learning algorithms.

To respond to the above challenges, the group discussed avenues for

future research on security engineering for sCPS. Clearly, the existing

cybersecurity approaches are reliant on relative isolation of software

from physical processes and humans. To bridge this gap in sCPS, one

suggestion was to increase the set of existing security tactics by drawing

inspiration from other fields. For instance, one can use tactics from

reliability engineering such as redundancy and aggregation of diverse

signals. From physical security, we can borrow separation of system’s

elements and hardening. Tactics from classic cybersecurity (such as

diversity and encryption) can be upgraded to the sCPS context by

considering their effects in a broader system context.

Another way to address the discussed challenges is to change the

security mindset for sCPS. Instead of trying to prevent any attack,

security engineers can focus on how to best respond to attacks via

adaptation. The adaptive defenses can continuously stratify the system

into critical, controllable, and uncontrollable parts. With this

information, the system can guide its responses appropriately without

spending resources on trying to recover a part where the control has

been lost.

Finally, the group discussed implications for practical engineering:

 Plugging in well-tested solutions might not work due to rapid

change in context.

 Supply chains, often providing low-level devices and functions,

need a systematic way to be scrutinized for the broadened

notion of security.

 Security analysis for sCPS needs to become consistent – more

repeatable with more predictable results, even by diverse groups

ACM SIGSOFT Software Engineering Notes Page 22 April 2017 Volume 42 Number 2

of experts. Attack modeling and simulation may become one

such consistent approach.

 Instead of security reviews by experts, hacking competitions

have been suggested as a method of evaluating and improving a

system’s security. The system’s builder would announce a prize

for compromising a system, and a number of teams would try to

break the system’s security.

To summarize this section, sCPS brings several challenges to secure

engineering of control software: intentional deviations in input errors,

increased scope of systems, and attacks on learning. The discussion

indicates that security for sCPS is a broad and uncertain quality,

requiring analysis and intelligent response at run time. The group

suggested borrowing tactics from other fields and giving adaptive

security a richer way to stratify the system’s context. This discussion

has certainly not been exhaustive, and more engineering challenges for

secure sCPS will shape the landscape of future research.

6.4 Software Engineering Process for sCPS
The fourth breakout group focused on software engineering processes

for the development of sCPS. One common theme in the contributions

of the workshop as well as the respective research field includes the

application of well-established principles from software engineering to

enhance the non-trivial research field of cyber-physical systems.

Furthermore, as the theme of this workshop focused on smart cyber-

physical systems, the group discussion raised the question, if and why

smartness of CPS even affects the engineering process: Many models

used in software development are general enough and do not require

any assumptions about the software systems they are used to build. In

order to recognize the ways in which sCPS may differ from more

traditional CPS, this group concluded that a precise definition of

smartness is detrimental to further analysis.

As an impromptu solution, the group defined smart systems as systems

that: (1) can adapt to a variety of situations instead of being built for a

fixed scenario, (2) gather data about their environment and their own

state throughout their operation, and (3) use that data to improve their

behavior at some future point in their respective life-cycle, which may

be a future version of the system deployed by the system developer or

even be an adapted version of the system generated at runtime via some

form of artificial intelligence. The group noted that many such systems

(autonomous vehicles, smart cities, personalized healthcare appliances,

e.g.) are currently gaining attention and are increasingly adopted. These

systems would greatly benefit from insights regarding systematic

development approaches for smartness.

From this rather simple definition, the group managed to derive a few

ways in which smartness poses a challenge to current software

development processes. In one way, smart behavior relies on the

interaction of the system with its surroundings, enabling the smart

system to not only perceive and react on the environmental information

but also deliberately plan changes in the environment. The need to

interleave the development of hardware and software, which is already

felt in all CPS, is thus aggravated in sCPS. It thus shows that smartness

introduces a whole range of new cross-cutting concerns into the

development process, out of which the breakout group identified three

major groups of development aspects that seem to be the most essential

missing links at the moment:

 First, even though systems are getting ever smarter, they are

going to make mistakes as well, which need to be detected. As

smart systems are deployed for tasks that are too complicated or

too work-intensive to be performed by humans, their errors may

not be easily detectable for a human supervisor. It is necessary

to employ special techniques to ensure the predictability and

liability of a smart system’s behavior. An important factor to

generate trust in an autonomous machine’s actions is

transparency: the system needs to find the right decision and be

able to explain that decision to humans.

 Second, as a sCPS will adapt and change its behavior at

runtime, such systems should be debugable. If a human

supervisor detects a problem with the system’s behavior,

techniques are needed that would allow to fix the problem, even

with all the difficulty of tracing it back to its origin.

 And third, this whole process of error detection and correction

itself needs to be reliable enough so that the safety of the sCPS

can be certified. Certification of autonomous systems, however,

appears to be an area still largely untouched.

Having discussed concerns that crosscut over several components of the

software architecture, adding smartness to CPS also affects different

phases of traditional development processes:

 Requirements need to be defined in a more general manner

allowing to accommodate for openness of the system and the

uncertainty it is dealing with during operation. More abstract

requirement specification, however, can yield many different

instances of problems within the space of parameters spanned

by the requirements.

 The system design should accommodate for a variety of

configurations targeting the different situations that the system

will encounter during its life time—possibly even unforeseen

situations.

 Testing of sCPS during design time can only provide very

limited guarantees towards actual run time behavior when the

system is allowed to reconfigure itself during run time.

In general, many of the engineering steps can be performed during

system design for non-autonomous systems. However, these activities

are going to be shifted to the operations phase and thus must be

executed (at least in parts) during run time. Engineering such systems

becomes a “perpetual process” that unifies tool-supported development

and evolution with automatic runtime adaptation [8]. Realizing this shift

will require new models on how to distribute tasks along the

development cycle and new tools to enable tasks like reconfiguration,

configuration testing, and quality assurance to be split between design

time and run time. Tools that help the system to handle complexity, deal

with uncertainty, and take advantage of runtime data are needed. When

developing new tools for sCPS, their integration into the life-cycle must

adhere to a plug-and-play paradigm, i.e., for every reconfiguration

performed on the system, there must be a clear (and ideally quick) way

to apply the tool to new parts of the system to ensure that the results of

the tool can be preserved for the system as a whole.

Finally, the discussion concluded with a few questions that have been

considered most urgent to answer by the group members and may

provide fruitful directions for future research of sCPS:

 How can “smartness” be defined and how exactly does it relate

to concepts like “self-adaptation” or “artificial intelligence”?

 Traditional software engineering represents rigid processes: is it

helpful to consider this rigidness a goal for software engineering

even for smart systems that might be achieved after gaining

more experience on how to build them? Or would it be more

helpful to abandon the view of system building as an exact

discipline of engineering when it comes to smart systems?

 Adding “smartness” is a very general approach to increase the

system performance for a variety of systems: Should solutions

for different domains be sought of the same level of generality?

Or does the controllability of smart system design only arise

when considering more specific domains?

ACM SIGSOFT Software Engineering Notes Page 23 April 2017 Volume 42 Number 2

7. ACKNOWLEDGEMENTS
The SEsCPS 2016 workshop is a collective endeavor, as such, the

authors would like to express their gratitude to those who have

participated in the organization of this workshop. This comprises in

particular the ICSE 2016 Workshops Co-Chairs, in particular Marija

Mikic and Mauro Pezzè, and the SEsCPS 2016 Program Committee

comprised of Paris Avgeriou, Steffen Becker, Nelly Bencomo, Johann

Bourcier, Radu Calinescu, Jan Carlson, Sagar Chaki, Ivica Crnkovic,

Nicolas D'Ippolito, Rogério de Lemos, Dionisio de Niz, Antonio Filieri,

Ilias Gerostathopoulos, Carlo Ghezzi, Holger Giese, Rodolfo Haber,

Gabor Karsai, Mark Klein, Filip Krikava, Martina Maggio, Henry

Muccini, Maurizio Murroni, Geoffrey Nelissen, Gurulingesh Raravi,

Wolfgang Renz, Bernhard Schaetz, Ina Schieferdecker, Lionel

Seinturier, Vitor E. Silva Souza, Bedir Tekinerdogan, Petr Tuma, and

Steffen Zschaler.

8. REFERENCES
[1] NSF, Cyber Physical Systems, NSF 15-541

http://www.nsf.gov/pubs/2015/nsf15541/nsf15541.pdf

[2] B. K. Kim and P. R. Kumar, “Cyber–Physical Systems: A

Perspective at the Centennial”, Proceedings of the IEEE, vol. 100,

no. Special Centennial, 2012.

[3] E. A. Lee, “Cyber Physical Systems: Design Challenges”, 11th

IEEE International Symposium on Object Oriented Real-Time

Distributed Computing, 2008.

[4] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-Physical

Systems: A New Frontier,” IEEE International Conference on

Sensor Networks, Ubiquitous, and Trustworthy Computing, 2008.

[5] T. Bures, D. Weyns, S. Biffl, M. Daun, T. Gabor, D. Garlan, I.

Gerostathopoulos, C. Julien, F. Krikava, R. Mordinyi, “Software

Engineering for Smart Cyber-Physical Systems – Towards a

Research Agenda,” Software Engineering Notes, November 2015.

[6] A. Rashid, S. Asad A. Naqvi, R. Ramdhany, M. Edwards, R.

Chitchyan, and M. A. Babar. Discovering \unknown known"

security requirements. In Proceedings of the 38th International

Conference on Software Engineering, 2016.

[7] Andy Greenberg. “Hackers Remotely Kill a Jeep on the

Highway—With Me in It.” In WIRED, July 21, 2015.

[8] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V.

Grassi, L. Grunske, P. Inverardi, J. Jezequel, S. Malek, R.

Mirandola, M. Mori, and G. Tamburrelli. “Perpetual Assurances in

Self-adaptive Systems.” In Software Engineering for Self-Adaptive

Systems III. Lecture Notes in Computer Science, Springer, 2017.

ACM SIGSOFT Software Engineering Notes Page 24 April 2017 Volume 42 Number 2

